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Sensitivity analysis helps identify which model inputs convey the most uncertainty to the model output. One of the
most authoritative measures in global sensitivity analysis is the Sobol’ total-order index, which can be computed with
several different estimators. Although previous comparisons exist, it is hard to know which estimator performs best
since the results are contingent on the benchmark setting defined by the analyst (the sampling method, the distribu-
tion of the model inputs, the number of model runs, the test function or model and its dimensionality, the weight
of higher order effects, or the performance measure selected). Here we compare several total-order estimators in an
eight-dimension hypercube, where these benchmark parameters are treated as random parameters. This arrangement
significantly relaxes the dependency of the results on the benchmark design. We observe that the most accurate esti-
mators are from Razavi and Gupta, Jansen, or Janon/Monod for factor prioritization, and from Jansen, Janon/Monod,
or Azzini and Rosati for approaching the “true” total-order indices. The rest lag considerably behind. Our work helps
analysts navigate myriad total-order formulae by reducing the uncertainty in the selection of the most appropriate
estimator.

KEY WORDS: uncertainty analysis, sensitivity analysis, modeling, Sobol’ indices, variance decomposi-
tion, benchmarking analysis

1. INTRODUCTION

Sensitivity analysis (SA), i.e., the assessment of how much uncertainty in a given model output is conveyed by each
model input, is a fundamental step to judge the quality of model-based inferences [1–3]. Among the many sensitivity
indices available, variance-based indices are widely regarded as the gold standard because they are model-free (no
assumptions are made about the model), global (they account for interactions between the model inputs), and easy to
interpret [4–6]. Given a model of the formy = f(x), x = (x1, x2, ..., xi, ..., xk) ∈ Rk, wherey is a scalar output
andx1, ..., xk are thek-independent model inputs, the variance ofy is decomposed into conditional terms as follows:

V (y) =
k∑

i=1

Vi +
∑

i

∑

i<j

Vij + ... + V1,2,...,k (1)

where

Vi = Vxi

[
Ex∼i

(y|xi)
]
, Vij = Vxi,xj

[
Ex∼i,j

(y|xi, xj)
]− Vxi

[
Ex∼i

(y|xi)
]− Vxj

[
Ex∼j

(y|xj)
]

(2)
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and so on up to thekth order. The notationx∼i means all-but-xi. By dividing each term in Eq. (1) by the unconditional
model output varianceV (y), we obtain the first-order indices for single inputs (Si), pairs of inputs (Sij), and for all
higher order terms. First-order indices thus provide the proportion ofV (y) caused by each term and are widely
used to rank model inputs according to their contribution to the model output uncertainty, a setting known as factor
prioritization [1].

Homma and Saltelli [7] also proposed the calculation of the total-order indexTi, which measures the first-order
effect of a model input jointly with its interactions up to thekth order

Ti = 1− Vx∼i

[
Exi(y|x∼i)

]

V (y)
=

Ex∼i

[
Vxi(y|x∼i)

]

V (y)
(3)

WhenTi ≈ 0, it can be concluded thatxi has a negligible contribution toV (y). For this reason, total-order
indices have been applied to distinguish influential from noninfluential model inputs and reduce the dimensionality
of the uncertain space, a setting known as factor-fixing [1].

The most direct computation ofTi is via Monte Carlo (MC) estimation, because it does not impose any assump-
tion on the functional form of the response function, unlike metamodeling approaches [8,9]. The Fourier Amplitude
Sensitivity Test (FAST) may also be used to calculateTi, which involves transforming input variables into periodic
functions of a single frequency variable, sampling the model, and analyzing the sensitivity of input variables using
Fourier analysis in the frequency domain [10,11]. Although an innovative approach, FAST is sensitive to the char-
acteristic frequencies assigned to input variables and is not a very intuitive method. For these reasons, it has mostly
been superseded by MC approaches, or by metamodels when computational expense is a serious issue. In this work
we focus on the former.

MC methods require generating a(N, 2k) base sample matrix with either random or quasi-random numbers
(e.g., Latin Hypercube Sampling, Sobol’ quasi-random numbers [12,13]), where each row is a sampling point and
each column a model input. The firstk columns are allocated to anA matrix and the remainingk columns to aB
matrix, which are known as the base sample matrices. Any point in eitherA or B can be indicated asxvi, wherev

andi, respectively, index the row (from 1 toN ) and the column (from 1 tok). Then,k additionalA(i)
B (B(i)

A ) matrices
are created, where all columns come fromA (B) except theith column, which comes fromB (A). The numerator
in Eq. (3) is finally estimated using the model evaluations obtained from theA (B) andA

(i)
B (B(i)

A ) matrices. Some
estimators may also use one-third orX base sample matrices (i.e.,A,B,C, . . . , X); although, the use of more than
three matrices has been recently proven inefficient by Lo Piano et al. [14].

1.1 Total-Order Estimators and Uncertainties in the Benchmark Settings

The search for efficient and robust total-order estimators is an active field of research [1,7,15–20]. Although some
works have compared their asymptotic properties (i.e., [16]), most studies have promoted empirical comparisons
where different estimators are benchmarked against known test functions and specific sample sizes. However valu-
able these empirical studies may be, Becker [21] observed that the results are very much conditional on the choice
of model, its dimensionality, and the selected number of model runs. It is hard to say from previous studies whether
an estimator outperforming another truly reflects its higher accuracy or simply its better performance under the nar-
row statistical design of the study. We extend the list of factors that Becker [21] regards as influential in a given
benchmarking exercise and discuss how they affect the relative performance of sensitive estimators, as follows:

• Sampling Method:The creation of the base sample matrices can be done using the MC or quasi MC (QMC)
methods [12,13]. Compared to the MC method, the QMC method allows one to more effectively map the
input space as it leaves smaller unexplored volumes (Fig. S1). However, Kucherenko et al. [22] observed
that MC methods might help obtain more accurate sensitivity indices when the model under examination has
important high-order terms. Both the MC and QMC methods have been used when benchmarking sensitivity
indices [15,23].

• Form of the Test Function:Some of the most commonly used functions in a sensitivity analysis are the
Ishigami and Homma [24], the Sobol’ G and its variants [23,25], the Bratley and Fox [26] or the set of
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functions presented in Kucherenko et al. [14,16,18,22,23]. Despite being analytically tractable, these functions
capture only one possible interval of model behavior, and the effects of nonlinearities and nonadditivities is
typically unknown in real models. This black box nature of models has become more of a concern in the last
decades due to the increase in computational power and code complexity (which prevents the analyst from
intuitively grasping the model’s behavior [27]), and to the higher demand for model transparency [3,28,29].
This renders the functional form of the model similar to a random variable [21], something not accounted for
by previous works [14,16,18,23].

• Function Dimensionality:Many studies focus on low-dimensional problems, either by using test functions
that only require a few model inputs (e.g., the Ishigami function, wherek = 3), or by using test functions
with a flexible dimensionality, but settingk at a small value of, e.g.,k ≤ 8 (Sobol’ G [25] or Bratley and
Fox [26] functions). This approach trades computational manageability for comprehensiveness by neglecting
higher dimensions. It is difficult to tell which estimator might work best in models with tens or hundreds of
parameters. Examples of such models can be readily found in the Earth and Environmental Sciences domain
[30], including the Soil and Water Assessment Tool (SWAT) model, wherek = 50 [31], or the Mod́elisation
Environmentale-Surface et Hydrologie (MESH) model, wherek = 111[32].

• Distribution of the Model Inputs:The large majority of benchmarking exercises assume uniformly-distributed
inputsp(x) ∈ U(0, 1)k [14,16,23,33]. However, there is evidence that the accuracy ofTi estimators might be
sensitive to the underlying model input distributions, to the point of overturning the model input ranks [34,35].
Furthermore, in uncertainty analysis (e.g., in decision theory), the analysts may use distributions with peaks
for the most likely values derived, for instance, from an expert’s elicitation stage.

• Number of Model Runs:Sensitivity test functions are generally not computationally expensive and can be run
without much concern for computational time. This is frequently not the case for real models, whose high
dimensionality and complexity might set a constraint on the total number of model runs available. Under
such restrictions, the performance of the estimators of the total-order index depends on their efficiency (how
accurate they are given the budget of runs that can be allocated to each model input). There are no specific
guidelines as to which total-order estimator might work best under these circumstances [21].

• Performance Measure Selected:Typically, a sensitivity estimator has been considered to outperform the rest
if, on average, it displays a smaller mean absolute error (MAE), computed as follows:

MAE =
1
p

p∑

v=1

(∑k
i=1 |Ti − T̂i|

k

)
(4)

wherep is the number of replicas of the sample matrix, andTi and T̂i are the analytical and the esti-
mated total-order index of theith input. The MAE is appropriate when the aim is to assess which esti-
mator better approaches the true total-order indices, because it averages the error for both influential and
noninfluential indices. However, the analyst might be more interested in using the estimated indicesT̂ =
{T̂1, T̂2, ..., T̂i, ..., T̂k} to accurately rank parameters or screen influential from noninfluential model inputs
[1]. In such context, the MAE may be best substituted or complemented with a measure of rank concordance
between the vectorsr and r̂, which reflect the ranks inT and T̂ , respectively, such as the Spearmanρ or
the KendallW coefficient [21,36,37]. It can also be the case that disagreements on the exact ranking of low-
ranked parameters may have no practical importance because the interest lies in the correct identification of
top ranks only [30]. Savage [38] scores or other measures that emphasize this top-down correlation are then a
more suitable choice.

Here, we benchmark the performance of eight different MC-based formulae available to estimateTi (Table 1).
Although the list is not exhaustive, it reflects the research conducted onTi over the last 20 years: from the classic
estimators of Homma and Saltelli [7], Jansen [15], and Saltelli et al. [1] up to the new contributions by Janon et al.
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TABLE 1: Formulae to computeTi. f0 andV (y) are estimated according to the original papers. For estimators
2 and 5, f0 = (1/N)

∑N
v=1 f(A)v. For estimators 1, 2, and 5,V (y) = (1/N)

∑N
v=1[f(A)v − f0]

2 [1,

Eq. (4.16)] and [7, Eqs. (15) and (20)]. For estimator 3,f0 = (1/N)
∑N

v=1

[
f(A)v + f

(
A

(i)
B

)
v

]
/2 andV (y) =

(1/N)
∑N

v=1

[
f(A)2

v + f
(
A

(i)
B

)2

v

]
/2− f2

0 [16, Eq. (15)]. In estimator 4,〈f(A)v〉 is the mean off(A)v. We use

a simplified version of the Glen and Isaacs [17] estimator because spurious correlations are zero by design. As for
estimator 7, we refer to it as pseudo-Owen given its use of aC matrix and its identification with Owen [40] in Iooss
et al. [41], where we retrieve the formula from.V (y) in estimator 7 is computed as in estimator 3 following Iooss et
al. [41], whereasV (y) in estimator 8 is computed as in estimator 1

No. Estimator Authors

1
(1/2N)

∑N
v=1

[
f(A)v − f(A(i)

B )v

]2

V (y)
Jansen [15]

2
V (y)− (1/N)

∑N
v=1 f(A)vf(A(i)

B )v + f2
0

V (y)
Homma and Saltelli [7]

3 1− (1/N)
∑N

v=1 f(A)vf(A(i)
B )v − f2

0

V (y)
Janon et al. [16] and

Monod et al. [19]

4 1−




1
N − 1

N∑

v=1

[f(A)v − 〈f(A)v〉]
[
f(A(i)

B )v −
〈
f(A(i)

B )v

〉]
√

V [f(A)v]V
[
f(A(i)

B )v

]


 Glen and Isaacs [17]

5 1− (1/N)
∑N

v=1 f(B)vf(B(i)
A )v − f2

0

V (y)
Saltelli et al. [1]

6

∑N
v=1

[
f(B)v − f

(
B

(i)
A

)
v

]2
+

[
f(A)v − f(A(i)

B )v

]2

∑N
v=1[f(A)v − f(B)v]2 +

[
f
(
B

(i)
A

)
v
− f

(
A

(i)
B

)
v

]2
Azzini and Rosati [33] and

Azzini et al. [18]

7
V (y)−

[
(1/N)

∑N
v=1

{[
f(B)v − f(C(i)

B )v

][
f
(
B

(i)
A

)
v
− f(A)v

]}]

V (y)
pseudo-Owen

8
Ex∗∼i

[γx∗∼i(hi)] + Ex∗∼i[Cx∗∼i(hi)]

V (y)
Razavi and Gupta [20,39]

[16], Glen and Isaacs [17], Azzini and Rosati [33], and Razavi and Gupta [20,39]. In order to reduce the influence
of the benchmarking design in the assessment of the estimators’ accuracy, we treat the sampling methodτ, the
underlying model input distributionφ, the number of model runsNt, the test functionε, its dimensionality and
degree of nonadditivity (k, k2, k3), and the performance measureδ as random parameters. This better reflects the
diversity of models and sensitivity settings available to the analyst. By relaxing the dependency of the results on these
benchmark parameters, we define an unprecedentedly large setting where all formulae can prove their accuracy. Note
that we refer to the set of benchmarking assumptions as benchmarking parameters or parameters. This is intended to
distinguish them from the inputs of each test function generated by the metafunction, which we refer to as inputs.

We therefore extend the Becker [21] approach by testing a wider set of Monte Carlo estimators, by exploring a
wider range of benchmarking assumptions and by performing a formal SA on these assumptions. The aim is therefore
to provide a much more global comparison of available MC estimators than is available in the existing literature and
to investigate how the benchmarking parameters may affect the relative performance of estimators. Such information

International Journal for Uncertainty Quantification



A Comprehensive Comparison of Total-Order Estimators 5

can help point to estimators that are not only efficient on a particular case study, but efficient and robust to a wide
range of practical situations.

2. ASSESSMENT OF THE UNCERTAINTIES IN THE BENCHMARKING PARAMETERS

In this section, we formulate the benchmarking parameters as random variables and assess how the performance of
estimators is dependent on them by performing a SA. In essence, this is a sensitivity analysis of sensitivity analyses
[42], and a natural extension of a similar uncertainty analysis in a recent work by Becker [21]. The use of global
SA tools to better understand the properties of estimators can give insights into how estimators behave in different
scenarios that are not available through analytical approaches.

2.1 The Setting

The variability in the benchmark settings (τ, Nt, k, k2, k3,φ, ε, δ) is described by probability distributions (Table 2).
We assign uniform distributions (discrete or continuous) to each parameter. In particular, we chooseτ ∼ DU(1, 2)
to check how the performance ofTi estimators is conditioned by the use of MC (τ = 1) or QMC (τ = 2) methods
in the creation of the base sample matrices. Forτ = 2, we use the Sobol’ sequence scrambled according to Owen
[43] to avoid repeated coordinates at the beginning of the sequence. The total number of model runs and inputs is
respectively described asNt ∼ DU(10, 1000) andk ∼ DU(3, 100) to explore the performance of the estimators in a
wide range ofNt, k combinations. Given the sampling constraints set by the estimators’ reliance on either aB, B

(i)
A ,

A
(i)
B , or C

(i)
B matrices (Table 1), we modify the space defined by (Nt, k) to a nonrectangular domain (we provide

more information on this adjustment in Section 2.2).
For φ we setφ ∼ DU(1, 8) to ensure an adequate representation of the most common shapes in the(0, 1)k

domain. Besides the normal distribution truncated at(0, 1) and the uniform distribution, we also take into account
four beta distributions parametrized with distinctα and β values and a logitnormal distribution [Fig. 1(a)]. The
aim is to check the response of the estimators under a wide range of probability distributions, including U-shaped
distributions and distributions with different degrees of skewness.

We link each distribution in Fig. 1(a) to an integer value from 1 to 7. For instance, ifφ = 1, the joint probability
distribution of the model inputs is described asp(x1, . . . , xk) = U(0, 1)k. If φ = 8, we create a vectorφ =
{φ1,φ2, ..., φi, ..., φk} by randomly sampling the seven distributions in Fig. 1(a), and use theith distribution in the
vector to describe the uncertainty of theith input. This last case examines the behavior of the estimators when several
distributions are used to characterize the uncertainty in the model input space.

2.1.1 The Test Function

The parameterε operationalizes the randomness in the form and execution of the test function. Our test function is an
extended version of the Becker [21] metafunction, which randomly combinesp univariate functions in a multivariate
function of dimensionk. Here we consider the 10 univariate functions listed in Fig. 1(b), which represent common

TABLE 2: Summary of the parameters and their distributions.DU stands for
discrete uniform

Parameter Description Distribution
τ Sampling method DU(1, 2)
Nt Total number of model runs DU(10, 1000)
k Number of model inputs DU(3, 100)
φ Probability distribution of the model inputs DU(1, 8)
ε Randomness in the test function DU(1, 200)
k2 Fraction of pairwise interactions U(0.3, 0.5)
k3 Fraction of three-wise interactions U(0.1, 0.3)
δ Selection of the performance measure DU(1, 2)
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FIG. 1: The metafunction approach. (a) Probability distributions incuded inφ. NT stands for truncated normal distribution. (b)
Univariate functions included in the metafunction (f1(x) = cubic,f2(x) = discontinuous,f3(x) = exponential,f4(x) = inverse,
f5(x) = linear,f6(x) = no effect,f7(x) = non-monotonic,f8(x) = periodic,f9(x) = quadratic, andf10(x) = trigonometric).

responses observed in physical systems and in classic SA test functions (see Becker [21] for a discussion on this point).
We note that an alternative approach would be to construct orthogonal basis functions that could allow analytical
evaluation of true sensitivity indices for each generated function; however, this extension is left for future work.

We construct the test function as follows:

1. Let us consider a sample matrix such as

M =




x11 x12 · · · x1i · · · x1k

x21 x22 · · · x2i · · · x2k

...
...

...
...

...
...

xv1 xv2 · · · xvi · · · xvk

...
...

...
...

...
...

xN1 xN2 · · · xNi · · · xNk




(5)

where every pointxv = xv1, xv2, . . . , xvk represents a given combination of values for thek inputs andxi is
a model input whose distribution is defined byφ.

2. Let u = {u1, u2, ..., uk} be ak-length vector formed by randomly sampling with replacement of the 10 func-
tions in Fig. 1(b). Theith function inu is then applied to theith model input; for instance, ifk = 4 and
u = {u3, u4, u8, u1}, thenf3(x1) = (ex1 − 1)/(e− 1), f4(x2) = [10− (1/1.1)]−1(x2 + 0.1)−1, f8(x3) =
[sin(2πx3)]/2, and f1(x4) = x3

4. The elements inu thus represent the first-order effects of each model
input.
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3. Let V be a(n, 2) matrix, forn = k!/[2!(k − 2)!], the number of pairwise combinations between thek inputs
of the model. Each row inV thus specifies an interaction between two columns inM . In the case ofk = 4
and the same elements inu as defined in the previous example,

V =




1 2
1 3
1 4
2 3
2 4
3 4




(6)

e.g., the first row promotesf3(x1) · f4(x2), the second rowf3(x1) · f8(x3), and so on until thenth row. In
order to follow the sparsity of effects principle (most variations in a given model output should be explained
by low-order interactions [44]), the metafunction activates only a fraction of these effects: it randomly samples
Vk2nW rows fromV , and computes the corresponding interactions inM . Vk2nW is thus the number of pairwise
interactions present in the function. We makek2 an uncertain parameter described ask2 ∼ U(0.3, 0.5) in order
to randomly activate only between 30 and 50% of the available second-order effects inM .

4. Same as before, but for third-order effects: letW be a (m, 3) matrix, form = k!/[3!(k − 3)!], the number of
three-wise combinations between thek inputs inM . Fork = 4 andu as before,

W =




1 2 3
1 2 4
1 3 4
2 3 4


 (7)

e.g., the first row leads tof3(x1)·f4(x2)·f8(x3), and so on until themth row. The metafunction then randomly
samplesVk3mW rows fromW and computes the corresponding interactions inM . Vk3mW is therefore the
number of three-wise interaction terms in the function. We also makek3 an uncertain parameter described as
k3 ∼ U(0.1, 0.3) to activate only between 10 and 30% of all third-order effects inM . Note thatk2 > k3

because third-order effects tend to be less dominant than two-order effects (Table 2).

5. Three vectors of coefficients (α,β, γ) of lengthk, n andm are defined to represent the weights of the first-,
second-, and third-order effects, respectively. These coefficients are generated by sampling from a mixture of
two normal distributionsΨ = 0.3N (0, 5) + 0.7N (0, 0.5). This coerces the metafunction into replicating the
Pareto [45] principle (around 80% of the effects are due to 20% of the parameters), found to widely apply in
SA [1,46].

6. The metafunction can thus be formalized as follows:

y =
k∑

i=1

αif
uiφi(xi) +

Vk2nW∑

i=1

βif
uVi,1 φi(xVi,1)f

uVi,2 φi(xVi,2)

+
Vk3mW∑

i=1

γif
uWi,1 φi(xWi,1)f

uWi,2 φi(xWi,2)f
uWi,3 φi(xWi,3)

(8)

Note that there is randomness in the sampling ofφ, the univariate functions inu, and the coefficients in
(α, β,γ). The parameterε assesses the influence of this randomness by fixing the starting point of the pseudo-
random number sequence used for sampling the parameters just mentioned. We useε ∼ U(1, 200) to ensure
that the same seed does not overlap with the same value ofNt, k or any other parameter, an issue that might
introduce determinism in a process that should be stochastic. In Figs. S2 and S3 we show the type ofTi indices
generated by this metafunction.
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Finally, we describe the parameterδ as δ ∼ DU(1, 2). If δ = 1, we compute the Kendallτ-b correlation
coefficient between̂r andr, the estimated and the “true” ranks calculated fromT̂ andT , respectively. This aims at
evaluating how well the estimators in Table 1 rank all model inputs. Ifδ = 2, we compute the Pearson correlation
betweenr and r̂ after transforming the ranks to Savage scores [38]. This setting examines the performance of the
estimators when the analyst is interested in ranking only the most important model inputs. Savage scores are given as
follows:

Sai =
k∑

j=i

1
j

(9)

wherej is the rank assigned to thejth element of a vector of lengthk. If x1 > x2 > x3, the Savage scores (Sa) would
then be Sa1 = 1 + (1/2) + (1/3), Sa2 = (1/2) + (1/3), and Sa3 = 1/3. The parameterδ thus assesses the accuracy
of the estimators in properly ranking the model inputs, in other words, when they are used in a factor prioritization
setting [1].

In order to also examine how accurate the estimators are in approaching the true indices, we ran an extra round
of simulations with the MAE as the only performance measure, which we compute as follows:

MAE =
∑k

i=1 |Ti − T̂i|
k

(10)

Note that, unlike Eq. (4), Eq. (10) does not make use of replicas. This is because the effect of the sampling is averaged
out in our design by simultaneously varying all parameters in many different simulations.

2.2 Execution of the Algorithm

We examine how sensitive the performance of total-order estimators is to the uncertainty in the benchmark parameters
τ, Nt, k, k2, k3, φ, ε, δ by means of a global SA. We createA, B, andk−1 A

(i)
B matrices, each of dimension(211, k),

using Sobol’ quasi-random numbers. In these matrices each column is a benchmark parameter described with the
probability distributions of Table 2 and each row is a simulation with a specific combination ofτ, Nt, k, . . . values.
Note that we usek − 1 A

(i)
B matrices because we groupNt andk and treat them like a single benchmark parameter

given their correlation (see the list that follows).
Our algorithm runs rowwise over theA, B, andk − 1 A

(i)
B matrices, forv = 1, 2, . . . , 18,432rows. In thevth

row, it does the following:

1. It creates five(Ntv , kv) matrices using the sampling method defined byτv. The need for these five submatrices
responds to the five specific sampling designs requested by the estimators of our study (Table 1). We use these
matrices to compute the vector of estimated indicesT̂i for each estimator:

a. An A matrix andkv A
(i)
B matrices, each of size(Nv, kv), Nv = VNtv/(kv + 1)W (estimators 1–4 in

Table 1).

b. An A, B, andkv A
(i)
B matrices, each of size(Nv, kv), Nv = VNtv/(kv + 2)W (estimator 5 in Table 1).

c. An A, B, andkv A
(i)
B andB

(i)
A matrices, each of size(Nv, kv), Nv = VNtv/(2kv + 2)W (estimator 6 in

Table 1).

d. An A, B, andkv B
(i)
A andC

(i)
B matrices, each of size(Nv, kv), Nv = VNtv/(2kv + 2)W (estimator 7 in

Table 1).

e. A matrix formed byNv stars, each of sizekv(1/∆h−1)+1. Given that we set∆h at 0.2 (see Supplement
Section),Nv = TNtv

/(4k + 1)U (estimator 8 in Table 1).

The different sampling designs and the value forkv constrains the total number of runsNtv that can be
allocated to each estimator. Furthermore, given the probability distributions selected forNt andk (Table 2),
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specific combinations of (Ntv
, kv) lead toNv ≤ 1, which is computationally unfeasible. To minimize these

issues, we force the comparison between estimators to approximate the sameNtv
value. Since the sampling

design structure of Razavi and Gupta [20,39] is the most constraining, we useNv = 2(4k + 1)/(k + 1) (for
estimators 1–4),Nv = 2(4k + 1)/(k + 2) (for estimator 5), andNv = 2(4k + 1)/(2k + 2) (for estimators
6 and 7) whenNv ≤ 1 in the case of Razavi and Gupta [20,39]. This compels all estimators to explore a
very similar portion of the (Nt, k) space, butNt andk become correlated, which contradicts the requirement
of independent inputs characterizing variance-based sensitivity indices [1]. This is why we treat (Nt, k) as a
single benchmark parameter in the SA.

2. It creates a sixth matrix, formed by anA andkv A
(i)
B matrices, each of size(211, kv). We use this submatrix

to compute the vector of true indicesT , which could not be calculated analytically due to the wide range
of possible functional forms created by the metafunction. Following Becker [21], we assume that a fairly
accurate approximation toT could be achieved with a large Monte Carlo estimation.

3. The distribution of the model inputs in these six sample matrices is defined byφv.

4. The metafunction runs over these six matrices simultaneously, with its functional form, and degree of active
second- and third-order effects as set byεv, k2v , andk3v , respectively.

5. It computes the estimated sensitivity indicesT̂v for each estimator and the true sensitivity indicesTv using
the Jansen [15] estimator, which is currently best practice in SA.

6. It checks the performance of the estimators. This is done in two ways:

a. If δ = 1, we compute the correlation betweenr̂v andrv (obtained respectively from̂Tv andTv) with
Kendall tau, and ifδ = 2, we compute the correlation betweenr̂v andrv on Savage scores. The model
output in both cases is the correlation coefficientr, with higherr values indicating a better performance in
properly ranking the model inputs.

b. We compute the MAE between̂Tv andTv. In this case, the model output is the MAE, with lower values
indicating a better performance in approaching the true total-order indices.

3. RESULTS

3.1 Uncertainty Analysis

Under a factor prioritization setting (e.g., when the aim is to rank the model inputs in terms of their contribution to
the model output variance), the most accurate estimators are Jansen [15], Razavi and Gupta [20,39], Janon/Monod
[16,19], and Azzini and Rosati [18,33]. The distribution ofr values (the correlation between estimated and true
ranks) when these estimators are used is highly negatively skewed, with median values of≈ 0.9. Glen and Isaacs
[17], Homma and Saltelli [7], Saltelli [1], and pseudo-Owen lag behind and display medianr values of≈ 0.35, with
pseudo-Owen ranking last (r ≈ 0.2). The range of values obtained with these formulae is much more spread out and
include a significant number of negativer values, suggesting that they overturned the true ranks in several simulations
[Figs. 2(a) and S4].

When the goal is to approximate the true indices, Janon/Monod [16,19], Jansen [15], and Azzini and Rosati
[18,33] also offer the best performance. The median MAE obtained with these estimators is generally smaller than
Glen and Isaacs [17] and pseudo-Owen, and the distribution of MAE values is much narrower than that obtained
with Homma and Saltelli [7], Saltelli [1], or Razavi and Gupta [20,39]. These three estimators are the least accurate
and produce several MAE values larger than102 in several simulations [Fig. 2(b)]. The volatility of Razavi and
Gupta [20,39] under the MAE is reflected in the numerous outliers produced and sharply contrasts with its very good
performance in a factor prioritization setting [Fig. 2(a)].

To obtain a finer insight into the structure of these results, we plot the total number of model runsNt against
the function dimensionalityk (Fig. 3). This maps the performance of the estimators in the input space formed by all
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FIG. 2: Boxplots summarizing the results of the simulations. (a) Correlation coefficient betweenr̂ andr, the vector of estimated
and true ranks. (b) Mean absolute error (MAE).

possible combinations ofNt andk given the specific design constraints of each formulae. Under a factor prioritization
setting, almost all estimators perform reasonably well at a very small dimensionality (k ≤ 10, r > 0.7), regardless
of the total number of model runs available. However, some differences unfold at higher dimensions: Saltelli [1],
Homma and Saltelli [7], Glen and Isaacs [17], and especially pseudo-Owen swiftly become inaccurate fork > 10,
even with large values forNt. Azzini and Rosati [18,33] display a very good performance overall except in the upper
Nt, k boundary, where most of the orange dots concentrate. The estimators of Jansen [15], Janon/Monod [16,19],
and Razavi and Gupta [20,39] rank the model inputs almost flawlessly regardless of the region explored in theNt, k
domain [Fig. 3(a)].

With regard to the MAE, Janon/Monod [16,19], Jansen [15], and Azzini and Rosati [18,33] maintain their high
performance regardless of theNt, k region explored. The accuracy of Razavi and Gupta [20,39], however, drops at
the upper-leftmost part of theNt, k boundary, where most of the largest MAE scores are located (MAE> 10). In
the case of Saltelli [1] and Homma and Saltelli [7], the largest MAE values concentrate in the region of smallk
regardless of the total number of model runs, a domain in which they achieved a high performance when the focus
was on properly ranking the model inputs.

The presence of a non-negligible proportion of model runs withr < 0 suggests that some estimators significantly
overturned the true ranks [Figs. 3(a) and S4]. To better examine this phenomenon, we re-plot Fig. 3(b) with just the
simulations yieldingr < 0 (Fig. S5). We observe thatr < 0 values not only appear in the region of smallNt, a
foreseeable miscalculation derived from allocating an insufficient number of model runs to each model input: they
also emerge at a relatively largeNt and lowk in the case of pseudo-Owen, Saltelli [1], and Homma and Saltelli [7].
The Saltelli estimator actually concentrates in thek < 10 zone most of the simulations with the lowest negativer
values (Fig. S5). This suggests that rank reversing is not an artifact of our study design as much as a by-product of the
volatility of these estimators when stressed by the sources of computational uncertainty listed in Table 2. Such strain
may lead these estimators to produce a significant fraction of negative indices or indices beyond 1, thus effectively
promotingr < 0.

We calculate the proportion ofTi < 0 andTi > 1 in each simulation that yieldedr < 0. In the case of Glen and
Isaacs [17] and Homma and Saltelli [7],r < 0 values are caused by the production of a large proportion ofTi < 0
(25–75%, thex-axis in Fig. 4). Pseudo-Owen and Saltelli [1] also suffer this bias, and in several simulations they
also generate a large proportion ofTi > 1 (up to 100% of the model inputs, they-axis in Fig. 4). The production
of Ti < 0 and Ti > 1 is caused by numerical errors and fostered by the values generated at the numerator of
Eq. (3):Ti < 0 may either derive fromEx∼i

[
Vxi

(y|x∼i)
]

< 0 (e.g., Homma and Saltelli [7] and pseudo-Owen) or
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FIG. 3: Number of runsNt against the function dimensionalityk. Each dot is a simulation with a specific combination of the
benchmark parameters in Table 2. The greener (blacker) the color is, the better (worse) the performance of the estimator. (a)
Accuracy of the estimators when the goal is to properly rank the model inputs, e.g., a factor prioritization setting. (b) Accuracy of
the estimators when the goal is to approach the “true” total-order indices.

Vx∼i

[
Exi(y|x∼i)

]
> V (y) (e.g., Saltelli [1]), whereasTi > 1 from Ex∼i

[
Vxi(y|x∼i)

]
> V (y) (e.g., Homma and

Saltelli [7] and pseudo-Owen) orVx∼i

[
Exi

(y|x∼i)
]

< 0 (e.g., Saltelli [1]).
To better examine the efficiency of the estimators, we summarized their performance as a function of the number

of runs available per model inputNt/k [21] (Figs. 5 and S6). This information is especially relevant to take an
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FIG. 4: Scatterplot of the proportion ofTi < 0 against the proportion ofTi > 1 mapped against the model outputr. Each dot is a
simulation. Only simulations withr < 0 are displayed.

(
)

FIG. 5: Scatterplot of the model outputr against the number of model runs allocated per model input(Nt/k). See Fig. S6 for a
visual display of all simulations and Fig. S7 for an assessment of the number of model runs that each estimator has in eachNt/k
compartment.

educated decision on which estimator to use in a context of a high-dimensional, computationally expensive model.
Even when the budget of runs per input is low{(Nt/k) ∈ [2, 20]}, Razavi and Gupta [20,39], Jansen [15], and
Janon/Monod [16,19] are very good at properly ranking model inputs (r ≈ 0.9), and are followed very close by
Azzini and Rosati [18,33] (r ≈ 0.8). Saltelli [1], Homma and Saltelli [7], and Glen and Isaacs [17] come after
(r ≈ 0.3), with pseudo-Owen scoring last (r ≈ 0.2). When theNt/k ratio is increased, all estimators improve their
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ranking accuracy and some quickly reach the asymptote: this is the case of Razavi and Gupta [20,39], Janon/Monod
[16,19], and Jansen [15], whose performance becomes almost flawless from(Nt/k) ∈ [40, 60] onward, and of Azzini
and Rosati [18,33], which reaches its optimum at(Nt/k) ∈ [60, 80]. The accuracy of the other estimators does not
seem to fully stabilize within the range of ratios examined. In the case of Homma and Saltelli [7] and Saltelli [1], their
performance oscillates before plummeting at(Nt/k) ∈ [200, 210], (Nt/k) ∈ [240, 260] and(Nt/k) ∈ [260, 280]
due to several simulations yielding larger < 0 values [Fig. 5(a)].

Janon/Monod [16,19] and Jansen [15] are also the most efficient estimators when the MAE is the measure of
choice, followed closely by Azzini and Rosati [18,33], Razavi and Gupta [20,39], and Glen and Isaacs [17]. Saltelli
[1] and Homma and Saltelli [7] gain accuracy at higherNt/k ratios yet their precision diminishes all the same from
(Nt/k) ∈ [200, 210] onward [Fig. 5(b)].

3.2 Sensitivity Analysis

When the aim is to rank the model inputs, the selection of the performance measure (δ) has the highest first-order
effect in the accuracy of the estimators [Fig. 6(a)]. The parameterδ is responsible for between 20% (Azzini and Rosati
[18,33]) and 30% (Glen and Isaacs [17]) of the variance in the finalr value. On average, all estimators perform better
when the rank is conducted on Savage scores (δ = 2), i.e., when the focus is on ranking the most important model
inputs only (Figs. S8–S15). As for the distribution of the model inputs (φ), it has a first-order effect in the accuracy of
Azzini and Rosati [18,33] (≈ 10%), Jansen [15], and Janon/Monod [16,19] (≈ 15%) and Razavi and Gupta [20,39]
(≈ 20%) regardless of whether the aim is a factor prioritization (r) or approaching the true indices (MAE). The
performance of these estimators drops perceptibly when the model inputs are distributed asBeta(8, 2) or Beta(2, 8)
(φ = 3 andφ = 4, Figs. S8–S23), suggesting that they may be especially stressed by skewed distributions. The
selection of random or quasi-random numbers during the construction of the sample matrix (τ) also directly conditions
the accuracy of several estimators. If the aim is to approach the “true” indices (MAE),τ conveys from 17% (Azzini
and Rosati [18,33]) to≈ 30% (Glen and Isaacs [17]) of the model output variance, with all estimators except Razavi
and Gupta [20,39] performing better on quasi-random numbers (τ = 2, Figs. S16–S23). In a factor prioritization
setting,τ is mostly influential through interactions. Interestingly, the proportion of active second- and third-order
interactions (k2, k3) does not alter the performance of any estimator in any of the settings examined.

To better understand the structure of the sensitivities, we compute Sobol’ indices after grouping individual pa-
rameters in three clusters, which we define based on their commonalities: the first group includes(δ, τ) and reflects
the influence of those parameters that can be defined by the sensitivity analyst during the setting of the benchmark
exercise. The second combines (ε, k2, k3,φ) and examines the overall impact of the model functional form, referred
to asf(x), which is often beyond the analyst’s grasp. Finally, the third group includes(Nt, k) only and assesses the
influence of the sampling design in the accuracy of the estimators (we assume that the total number of model runs,
besides being conditioned by the computing resources at hand, is also partially determined by the joint effect of the
model dimensionality and the use of either aB, A

(i)
B , B

(i)
A , or C

(i)
B matrices) [Fig. 6(b)].

The uncertainty in the functional form of the model [f(x)] is responsible for≈ 20% of the variance in the
performance of Azzini and Rosati [18,33], Janon/Monod [16,19], or Jansen [15] in a factor prioritization setting.
For Glen and Isaacs [17], Homma and Saltelli [7], pseudo-Owen, or Saltelli [1],f(x) is influential only through
interactions with the other clusters. When the MAE is the performance measure of interest,f(x) has a much stronger
influence in the accuracy of the estimators than the couple(Nt, k), especially in the case of Glen and Isaacs [17] (≈
40%). In any case, the accuracy of the estimators is significantly conditioned by interactions between the benchmark
parameters. The sum of all individualSi indices plus theSi index of the(Nt, k) cluster only explains from≈ 45%
(Saltelli [1]) to ≈ 70% (Glen and Isaacs [17]) of the estimators’ variance in ranking the model inputs, and from
≈ 24% (pseudo-Owen) to≈ 60% (Razavi and Gupta [20,39]) of the variance in approaching the true indices.

4. DISCUSSION AND CONCLUSIONS

Here we design an eight-dimension background for variance-based total-order estimators to confront and prove their
value in an unparalleled range of SA scenarios. By randomizing the parameters that condition their performance, we
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FIG. 6: Sobol’ indices. (a) Individual parameters. (b) Clusters of parameters. The clusterf(x) includes all parameters that describe
the uncertainty in the functional form of the model (ε, k2, k3, φ). Nt andk are assessed simultaneously due to their correlation.
Note that the MAE facet does not include the group (δτ) becauseδ (the performance measure used) is no longer an uncertain
parameter in this setting.

obtain a comprehensive picture of the advantages and disadvantages of each estimator and identify which particular
benchmark factors make them more prone to error. Our work thus provides a thorough empirical assessment of
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state-of-the-art total-order estimators and contributes to define best practices in variance-based SA. The study also
aligns with previous works focused on testing the robustness of the tools available to sensitivity analysts, a line of
inquiry that can be described as a sensitivity analysis of a sensitivity analysis (SA of SA) [42].

Our results provide support to the assumption that the scope of previous benchmark studies is limited by the
plethora of nonunique choices taken during the setting of the analysis [21]. We have observed that almost all decisions
have a nonnegligible effect: from the selection of the sampling method to the choice of the performance measure,
the design prioritized by the analyst can influence the performance of the estimator in a non-obvious way, namely
through interactions. The importance of non-additivities in conditioning performance suggests that the benchmark
of sensitivity estimators should no longer rely on statistical designs that change one parameter at a time (usually
the number of model runs and, more rarely, the test function [14,16,18,20,23,33,39,40,42]). Such setting reduces the
uncertain space to a minimum and misses the effects that the interactions between the benchmark parameters have in
the final accuracy of the estimator. If global SA is the recommended practice to fully explore the uncertainty space of
models, sensitivity estimators, being algorithms themselves, should be likewise validated [42].

Our approach also compensates the lack of studies on the theoretical properties of estimators in the sensitivity
analysis literature (see, for instance, [15,47]), and allows a more detailed examination of their performance than
theoretical comparisons. Empirical studies like ours mirror the numerical character of sensitivity analysis when the
indices can not be analytically calculated, which is most of the time in real-world mathematical modeling.

Two recommendations emerge from our work: the estimators by Razavi and Gupta [20,39], Jansen [15], Janon/
Monod [16,19], or Azzini and Rosati [18,33] should be preferred when the aim is to rank the model inputs. Jansen
[15], Janon/Monod [16,19], or Azzini and Rosati [18,33] should also be prioritized if the goal is to estimate the true
total-order indices. The drop in performance of Razavi and Gupta [20,39] in the second setting may be explained by a
bias at a lower sample sizes, i.e., a consistent overestimation of all total-order indices. This is because their estimator
relies on a constant mean assumption whose validity degrades with larger values of∆h [20,39]. In order to remove
this bias,∆h should take very small values (e.g.,∆h = 0.01), which may not be computationally feasible. Since the
direction of this bias is the same for all parameters it only affects the calculation of the true total-order indices, not
the capacity of the estimator to properly rank the model inputs. It is also worth stating that Razavi and Gupta [20,39]
is the only estimator studied here that require the analyst to define a tuning parameter,∆h. In this paper, we have set
∆h = 0.2 after some preliminary trials with the estimator; other works have used different values (e.g.,∆h = 0.002,
∆h = 0.1, ∆h = 0.3; see [20,21,39]). Selecting the most appropriate value for a given tuning parameter is not an
obvious choice, and this uncertainty can make an estimator volatile, as shown by Puy et al. [42] in the case of the
PAWN index.

The fact that Glen and Isaacs [17], Homma and Saltelli [7], Saltelli [1], and pseudo-Owen do not perform as well
in properly ranking the model inputs and approaching the true total-order indices may be partially explained by their
less efficient computation of elementary effects. By allowing the production of negative terms in the numerator, these
estimators also permit the production of negative total-order indices, thus leading to biased rankings or sensitivity
indices. In the case of Saltelli [1], the use of aB matrix at the numerator and anA matrix at the denominator
exacerbates its volatility (Table 1, estimator 5). Such inconsistency was corrected in Saltelli et al. [23].

The consistent robustness of Jansen [15], Janon/Monod [16,19], and Azzini and Rosati [18,33] makes their
sensitivity to the uncertain parameters studied here almost negligible. They are already highly optimized estimators
with not much room for improvement. Most of their performance is conditioned by the first- and total-order effects of
the model form jointly with the underlying probability distributions [f(x) in Fig. 6(b)], as well as by their sampling
design (Nt, k), which are in any case beyond the analyst’s control. As for the rest, their accuracy might be enhanced
by allocating a larger number of model runs per input (if computationally affordable), and especially in the case of
Homma and Saltelli [7], Saltelli [1], and Glen and Isaacs [17], by restricting their use to low-dimensional models (k <
10) and sensitivity settings that only require ranking the most important parameters (a restricted factor prioritization
setting [1]). Nevertheless, their substantial volatility is considerably driven by non-additivities, a combination that
makes them hard to tame and should raise caution about their use in any modeling exercise.

Our results slightly differ from Becker [21], who observed that Jansen [15] outperformed Janon/Monod [16,19]
under a factor prioritization setting. We did not find any significant difference between these estimators. Although our
metafunction approach is based on Becker [21], our study tests the accuracy of estimators in a larger uncertain space
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as we also account for the stress introduced by changes in the sampling methodτ, the underlying probability dis-
tributionsφ, or the performance measure selectedδ. These differences may account for the slightly different results
obtained between the two papers.

Our analysis can be extended to other sensitivity estimators (i.e., moment-independent-like entropy-based [48],
theδ-measure [49], or the PAWN index [50,51]). Moreover, it holds potential to be used overall as a standard crash test
every time a new sensitivity estimator is introduced to the modeling community. One of its advantages is its flexibility.
The Becker [21] metafunction can be easily extended with new univariate functions or probability distributions, and
the settings modified to check performance under different degrees of non-additivities or in a larger(Nt, k) space.
With some slight modifications it should also allow one to produce functions with dominant low- or high-order
terms, labeled as types B and C by Kucherenko et al. [22]. This should prompt developers of sensitivity indices to
severely stress their estimators so the modeling community and decision-makers fully appraise how they deal with
uncertainties.

5. CODE AVAILABILITY

TheRcode to replicate our results is available in Puy [52]. The uncertainty and sensitivity analysis have been carried
out with theRpackagesensobol [53], which also includes the test function used in this study.
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