RT Journal Article ID 64c0607c2b18b723 A1 Maljovec, Dan A1 Wang, Bei A1 Kupresanin, Ana A1 Johannesson, Gardar A1 Pascucci, Valerio A1 Bremer, Peer-Timo T1 ADAPTIVE SAMPLING WITH TOPOLOGICAL SCORES JF International Journal for Uncertainty Quantification JO IJUQ YR 2013 FD 2012-12-06 VO 3 IS 2 SP 119 OP 141 K1 adaptive sampling K1 experimental design K1 topological techniques AB Understanding and describing expensive black box functions such as physical simulations is a common problem in many application areas. One example is the recent interest in uncertainty quantification with the goal of discovering the relationship between a potentially large number of input parameters and the output of a simulation. Typically, the simulation of interest is expensive to evaluate and thus the sampling of the parameter space is necessarily small. As a result choosing a "good" set of samples at which to evaluate is crucial to glean as much information as possible from the fewest samples. While space-filling sampling designs such as Latin hypercubes provide a good initial cover of the entire domain, more detailed studies typically rely on adaptive sampling: Given an initial set of samples, these techniques construct a surrogate model and use it to evaluate a scoring function which aims to predict the expected gain from evaluating a potential new sample. There exist a large number of different surrogate models as well as different scoring functions each with their own advantages and disadvantages. In this paper we present an extensive comparative study of adaptive sampling using four popular regression models combined with six traditional scoring functions compared against a space-filling design. Furthermore, for a single high-dimensional output function, we introduce a new class of scoring functions based on global topological rather than local geometric information. The new scoring functions are competitive in terms of the root mean squared prediction error but are expected to better recover the global topological structure. Our experiments suggest that the most common point of failure of adaptive sampling schemes are ill-suited regression models. Nevertheless, even given well-fitted surrogate models many scoring functions fail to outperform a space-filling design. PB Begell House LK https://www.dl.begellhouse.com/journals/52034eb04b657aea,3b447596502fa0fe,64c0607c2b18b723.html