Доступ предоставлен для: Guest
Critical Reviews™ in Neurobiology

Выходит 3 номеров в год

ISSN Печать: 0892-0915

ISSN Онлайн: 2375-0014

SJR: 0.121

On the Relationships Between the Striatum and the Pedunculopontine Tegmental Nucleus

Том 11, Выпуск 4, 1997, pp. 241-261
DOI: 10.1615/CritRevNeurobiol.v11.i4.10
Get accessGet access

Краткое описание

In this essay we consider the role of the pedunculopontine tegmental nucleus as a striatal output station. We review the relevant anatomical, electrophysiological, behavioral, and pathological studies and conclude that the pedunculopontine tegmental nucleus occupies an important position in striatal outflow, receiving motor output from the dorsal striatum and information from the ventral striatum relating to limbic processes of motivation and reinforcement. The hypothesis we present is that the pedunculopontine tegmental nucleus is at the very least an integral component of the limbic-motor interface, although in discussing this concept we also assess the likelihood that the limbic-motor interface is in fact a distributed system−that is, that limbic-motor interfacing is not all done by a single structure in the central nervous system but that different aspects of it are served by different systems. We present the hypothesis that the pedunculopontine tegmental nucleus is one critical site through which limbic information concerned with motivation, reinforcement, and the construction of novel associations can gain access to a stream of motor outflow coming from the caudate-putamen and directed toward pontomedullary systems without reference back to the cerebral cortex. This hypothesis is important because it highlights striatal outflow, which is not processed through the cortical re-entry systems, and also emphasizes the importance of pontine systems in cognitive processing.

ЦИТИРОВАНО В
  1. Smith Yoland, Anatomy and Synaptic Connectivity of the Basal Ganglia, in Youmans Neurological Surgery, 2011. Crossref

  2. Omelchenko Natalia, Sesack Susan R., Cholinergic axons in the rat ventral tegmental area synapse preferentially onto mesoaccumbens dopamine neurons, The Journal of Comparative Neurology, 494, 6, 2006. Crossref

  3. Kippin Tod E., van der Kooy Derek, Excitotoxic lesions of the tegmental pedunculopontine nucleus impair copulation in naive male rats and block the rewarding effects of copulation in experienced male rats, European Journal of Neuroscience, 18, 9, 2003. Crossref

  4. Jerzemowska Grażyna, Plucińska Karolina, Majkutewicz Irena, Orzeł-Gryglewska Jolanta, Trojniar Weronika, Behavioral response elicited by stimulation of the mesolimbic system after procaine and bicuculline injection into the pedunculopontine tegmental nucleus in rats, Behavioural Brain Research, 241, 2013. Crossref

  5. Matsumura Masaru, The pedunculopontine tegmental nucleus and experimental parkinsonism, Journal of Neurology, 252, S4, 2005. Crossref

  6. Chivileva O. G., Gorbachevskaya A. I., Organization of Efferent Projections of the Pedunculopontine Nucleus of the Tegmentum of the Striatum in the Dog Brain, Neuroscience and Behavioral Physiology, 35, 9, 2005. Crossref

  7. Pickel Virginia M., Garzón Miguel, Mengual Elisa, Chapter 12 Electron microscopic immunolabeling of transporters and receptors identifies transmitter-specific functional sites envisioned in Cajal's neuron, in Changing Views of Cajal's Neuron, 136, 2002. Crossref

  8. Nicola Saleem M., The nucleus accumbens as part of a basal ganglia action selection circuit, Psychopharmacology, 191, 3, 2007. Crossref

  9. Rao Jayaraman, Neurochemistry of Parkinson's disease, in Parkinson's Disease and Related Disorders, Part I, 83, 2007. Crossref

  10. Weddell Rodger A., The effects of a midbrain glioma on memory and other functions: A longitudinal single case study, Neuropsychologia, 46, 4, 2008. Crossref

  11. Forster Gina L., Blaha Charles D., Pedunculopontine tegmental stimulation evokes striatal dopamine efflux by activation of acetylcholine and glutamate receptors in the midbrain and pons of the rat, European Journal of Neuroscience, 17, 4, 2003. Crossref

  12. Omelchenko Natalia, Sesack Susan R., Laterodorsal tegmental projections to identified cell populations in the rat ventral tegmental area, The Journal of Comparative Neurology, 483, 2, 2005. Crossref

  13. Yun Irene A., Nicola Saleem M., Fields Howard L., Contrasting effects of dopamine and glutamate receptor antagonist injection in the nucleus accumbens suggest a neural mechanism underlying cue-evoked goal-directed behavior, European Journal of Neuroscience, 20, 1, 2004. Crossref

  14. Jacquelin C., Lalonde R., Jantzen-Ossola C., Strazielle C., Neurobehavioral performances and brain regional metabolism in Dab1scm (scrambler) mutant mice, Behavioural Brain Research, 252, 2013. Crossref

  15. Tunik Eugene, Adamovich Sergei V., Poizner Howard, Feldman Anatol G., Deficits in rapid adjustments of movements according to task constraints in Parkinson's disease, Movement Disorders, 19, 8, 2004. Crossref

  16. Inglis W. L., Olmstead M. C., Robbins T. W., Pedunculopontine tegmental nucleus lesions impair stimulus–reward learning in autoshaping and conditioned reinforcement paradigms., Behavioral Neuroscience, 114, 2, 2000. Crossref

  17. Gomez-Gallego M., Fernandez-Villalba E., Fernandez-Barreiro A., Herrero M. T., Changes in the neuronal activity in the pedunculopontine nucleus in chronic MPTP-treated primates: an in situ hybridization study of cytochrome oxidase subunit I, choline acetyl transferase and substance P mRNA expression, Journal of Neural Transmission, 114, 3, 2007. Crossref

  18. Pienaar Ilse S., Elson Joanna L., Racca Claudia, Nelson Glyn, Turnbull Douglass M., Morris Christopher M., Mitochondrial Abnormality Associates with Type-Specific Neuronal Loss and Cell Morphology Changes in the Pedunculopontine Nucleus in Parkinson Disease, The American Journal of Pathology, 183, 6, 2013. Crossref

  19. Zhang Yueping, Bailey Kathleen R., Toupin Margaret M., Mair Robert G., Involvement of Ventral Pallidum in Prefrontal Cortex-Dependent Aspects of Spatial Working Memory., Behavioral Neuroscience, 119, 2, 2005. Crossref

  20. Garz�n Miguel, Pickel Virginia M., Dendritic and axonal targeting of the vesicular acetylcholine transporter to membranous cytoplasmic organelles in laterodorsal and pedunculopontine tegmental nuclei, The Journal of Comparative Neurology, 419, 1, 2000. Crossref

  21. Pienaar Ilse Sanet, Dexter David Trevor, Gradinaru Viviana, Neurophysiological and Optogenetic Assessment of Brain Networks Involved in Motor Control, in Movement Disorders, 2015. Crossref

  22. Breit S., Lessmann L., Unterbrink D., Popa R. C., Gasser T., Schulz J. B., Lesion of the pedunculopontine nucleus reverses hyperactivity of the subthalamic nucleus and substantia nigra pars reticulata in a 6-hydroxydopamine rat model, European Journal of Neuroscience, 24, 8, 2006. Crossref

  23. Lança A.J., Adamson K.L., Coen K.M., Chow B.L.C., Corrigall W.A., The pedunculopontine tegmental nucleus and the role of cholinergic neurons in nicotine self-administration in the rat: a correlative neuroanatomical and behavioral study, Neuroscience, 96, 4, 2000. Crossref

  24. Rauch Felix, Schwabe Kerstin, Krauss Joachim K., Effect of deep brain stimulation in the pedunculopontine nucleus on motor function in the rat 6-hydroxydopamine Parkinson model, Behavioural Brain Research, 210, 1, 2010. Crossref

  25. Takakusaki Kaoru, Takahashi Kazumi, Saitoh Kazuya, Harada Hirofumi, Okumura Toshikatsu, Kayama Yukihiko, Koyama Yoshimasa, Orexinergic projections to the cat midbrain mediate alternation of emotional behavioural states from locomotion to cataplexy, The Journal of Physiology, 568, 3, 2005. Crossref

  26. Chivileva O. G., Gorbachevskaya A. I., Projections of striatopallidal structures to the pedunculopontine nucleus of the tegmentum of the midbrain in dogs, Neuroscience and Behavioral Physiology, 38, 1, 2008. Crossref

  27. Breit S., Lessmann L., Benazzouz A., Schulz J. B., Unilateral lesion of the pedunculopontine nucleus induces hyperactivity in the subthalamic nucleus and substantia nigra in the rat, European Journal of Neuroscience, 22, 9, 2005. Crossref

  28. Nakano Katsuma, Neural circuits and topographic organization of the basal ganglia and related regions, Brain and Development, 22, 2000. Crossref

  29. Forster Gina L., Blaha Charles D., Laterodorsal tegmental stimulation elicits dopamine efflux in the rat nucleus accumbens by activation of acetylcholine and glutamate receptors in the ventral tegmental area, European Journal of Neuroscience, 12, 10, 2000. Crossref

  30. Yetnikoff L., Lavezzi H.N., Reichard R.A., Zahm D.S., An update on the connections of the ventral mesencephalic dopaminergic complex, Neuroscience, 282, 2014. Crossref

  31. Hamlin Adam S., McNally Gavan P., Fred Westbrook R., Osborne Peregrine B., Induction of Fos proteins in regions of the nucleus accumbens and ventrolateral striatum correlates with catalepsy and stereotypic behaviours induced by morphine, Neuropharmacology, 56, 4, 2009. Crossref

  32. Park Eunkyoung, Song Inho, Jang Dong Pyo, Kim In Young, The effect of low frequency stimulation of the pedunculopontine tegmental nucleus on basal ganglia in a rat model of Parkinson's disease, Neuroscience Letters, 577, 2014. Crossref

  33. Miller Anthony D., Blaha Charles D., Midbrain muscarinic receptor mechanisms underlying regulation of mesoaccumbens and nigrostriatal dopaminergic transmission in the rat, European Journal of Neuroscience, 21, 7, 2005. Crossref

  34. Anzai Yuki, Hayashi Masaharu, Ohya Tatsuo, Yokota Shumpei, The pedunculopontine nucleus in developmental disorders of the basal ganglia, Neuropathology, 28, 3, 2008. Crossref

  35. Jenkinson Ned, Nandi Dipanker, Muthusamy Kalai, Ray Nicola J., Gregory Ralph, Stein John F., Aziz Tipu Z., Anatomy, physiology, and pathophysiology of the pedunculopontine nucleus, Movement Disorders, 24, 3, 2009. Crossref

  36. Gorbachevskaya A. I., Chivileva O. G., Structural basis of the involvement of the striopallidum and pedunculopontine tegmental nucleus in the organization of adaptive behavior, Neuroscience and Behavioral Physiology, 37, 8, 2007. Crossref

  37. Shin Jung-Won, Geerling Joel C., Loewy Arthur D., Inputs to the ventrolateral bed nucleus of the stria terminalis, The Journal of Comparative Neurology, 511, 5, 2008. Crossref

  38. Nelson C.L., Wetter J.B., Milovanovic M., Wolf M.E., The laterodorsal tegmentum contributes to behavioral sensitization to amphetamine, Neuroscience, 146, 1, 2007. Crossref

  39. Bachand Kimberlee D., Guthrie Kathleen M., Wolgin David L., Expression of c-fos mRNA in the basal ganglia associated with contingent tolerance to amphetamine-induced hypophagia, Behavioural Brain Research, 198, 2, 2009. Crossref

  40. Clark Stewart D., Nothacker Hans-Peter, Blaha Charles D., Tyler Christopher J., Duangdao Dee M., Grupke Stephen L., Helton David R., Leonard Christopher S., Civelli Olivier, Urotensin II acts as a modulator of mesopontine cholinergic neurons, Brain Research, 1059, 2, 2005. Crossref

  41. Krout K.E, Mettenleiter T.C, Loewy A.D, Single cns neurons link both central motor and cardiosympathetic systems: a double-virus tracing study, Neuroscience, 118, 3, 2003. Crossref

  42. Alderson H.L, Latimer M.P, Blaha C.D, Phillips A.G, Winn P, An examination of d-amphetamine self-administration in pedunculopontine tegmental nucleus-lesioned rats, Neuroscience, 125, 2, 2004. Crossref

  43. Forster G.L, Falcon A.J, Miller A.D, Heruc G.A, Blaha C.D, Effects of laterodorsal tegmentum excitotoxic lesions on behavioral and dopamine responses evoked by morphine and d-amphetamine, Neuroscience, 114, 4, 2002. Crossref

  44. Pereira M., Morrell J. I., Functional Mapping of the Neural Circuitry of Rat Maternal Motivation: Effects of Site-Specific Transient Neural Inactivation, Journal of Neuroendocrinology, 23, 11, 2011. Crossref

  45. Miller A.D, Forster G.L, Metcalf K.M, Blaha C.D, Excitotoxic lesions of the pedunculopontine differentially mediate morphine- and d-amphetamine-evoked striatal dopamine efflux and behaviors, Neuroscience, 111, 2, 2002. Crossref

  46. Núria Satorra-Marín, Sandra Homs-Ormo, Rosa Arévalo-García, Ignacio Morgado-Bernal, Margalida Coll-Andreu, Effects of pre-training pedunculopontine tegmental nucleus lesions on delayed matching- and non-matching-to-position in a T-maze in rats, Behavioural Brain Research, 160, 1, 2005. Crossref

  47. Winn Philip, How best to consider the structure and function of the pedunculopontine tegmental nucleus: Evidence from animal studies, Journal of the Neurological Sciences, 248, 1-2, 2006. Crossref

  48. Winn Philip, Experimental studies of pedunculopontine functions: Are they motor, sensory or integrative?, Parkinsonism & Related Disorders, 14, 2008. Crossref

  49. Small Dana M., Veldhuizen Maria G., Felsted Jennifer, Mak Y. Erica, McGlone Francis, Separable Substrates for Anticipatory and Consummatory Food Chemosensation, Neuron, 57, 5, 2008. Crossref

  50. Hamani Clement, Moro Elena, Lozano Andres M., The pedunculopontine nucleus as a target for deep brain stimulation, Journal of Neural Transmission, 118, 10, 2011. Crossref

  51. Croll Susan D, Ip Nancy Y, Lindsay Ronald M, Wiegand Stanley J, Expression of BDNF and trkB as a function of age and cognitive performance, Brain Research, 812, 1-2, 1998. Crossref

  52. Clément C., Lalonde R., Strazielle C., Acetylcholinesterase activity in the brain of dystonia musculorum (Dstdt-J) mutant mice, Neuroscience Research, 72, 1, 2012. Crossref

  53. Stack Edward C, Balakrishnan Revathi, Numan Marilyn J, Numan Michael, A functional neuroanatomical investigation of the role of the medial preoptic area in neural circuits regulating maternal behavior, Behavioural Brain Research, 131, 1-2, 2002. Crossref

  54. Keating G.L, Winn P, Examination of the role of the pedunculopontine tegmental nucleus in radial maze tasks with or without a delay, Neuroscience, 112, 3, 2002. Crossref

  55. Wolgin David L., Amphetamine stereotypy, the basal ganglia, and the “selection problem”, Behavioural Brain Research, 231, 2, 2012. Crossref

  56. Alderson H.L., Brown V.J., Latimer M.P., Brasted P.J., Robertson A.H., Winn P., The effect of excitotoxic lesions of the pedunculopontine tegmental nucleus on performance of a progressive ratio schedule of reinforcement, Neuroscience, 112, 2, 2002. Crossref

  57. Swanson Larry W., Cerebral hemisphere regulation of motivated behavior11Published on the World Wide Web on 2 November 2000., Brain Research, 886, 1-2, 2000. Crossref

  58. Nandi Dipankar, Liu Xuguang, Winter Jonathan L., Aziz Tipu Z., Stein John F., Deep brain stimulation of the pedunculopontine region in the normal non-human primate, Journal of Clinical Neuroscience, 9, 2, 2002. Crossref

  59. Pienaar Ilse S., Gartside Sarah E., Sharma Puneet, De Paola Vincenzo, Gretenkord Sabine, Withers Dominic, Elson Joanna L., Dexter David T., Pharmacogenetic stimulation of cholinergic pedunculopontine neurons reverses motor deficits in a rat model of Parkinson’s disease, Molecular Neurodegeneration, 10, 1, 2015. Crossref

  60. Hamani Clement, Stone Scellig, Laxton Adrian, Lozano Andres M., The pedunculopontine nucleus and movement disorders: Anatomy and the role for deep brain stimulation, Parkinsonism & Related Disorders, 13, 2007. Crossref

  61. Alderson H.L, Faulconbridge L.F.H, Gregory L.P, Latimer M.P, Winn P, Behavioural sensitisation to repeated d-amphetamine: effects of excitotoxic lesions of the pedunculopontine tegmental nucleus, Neuroscience, 118, 2, 2003. Crossref

  62. Homs-Ormo Sandra, Coll-Andreu Margalida, Satorra-Marı́n Núria, Arévalo-Garcı́a Rosa, Morgado-Bernal Ignacio, Effects of pedunculopontine tegmental nucleus lesions on emotional reactivity and locomotion in rats, Brain Research Bulletin, 59, 6, 2003. Crossref

  63. Li Zhu, Bonhaus Douglas W., Huang Mei, Prus Adam J., Dai Jin, Meltzer Herbert Y., AC260584 (4-[3-(4-butylpiperidin-1-yl)-propyl]-7-fluoro-4H-benzo[1,4]oxazin-3-one), a selective muscarinic M1 receptor agonist, increases acetylcholine and dopamine release in rat medial prefrontal cortex and hippocampus, European Journal of Pharmacology, 572, 2-3, 2007. Crossref

  64. Jenkins Trisha A, Latimer Mary P, Alderson Helen L, Winn Philip, Determination of acetylcholine and dopamine content in thalamus and striatum after excitotoxic lesions of the pedunculopontine tegmental nucleus in rats, Neuroscience Letters, 322, 1, 2002. Crossref

  65. Nolte Marc W., Löscher Wolfgang, Gernert Manuela, Pedunculopontine neurons are involved in network changes in the kindling model of temporal lobe epilepsy, Neurobiology of Disease, 23, 1, 2006. Crossref

  66. Hahn Joel D., Swanson Larry W., Distinct patterns of neuronal inputs and outputs of the juxtaparaventricular and suprafornical regions of the lateral hypothalamic area in the male rat, Brain Research Reviews, 64, 1, 2010. Crossref

  67. Keating Glenda L, Walker Susannah C, Winn Philip, An examination of the effects of bilateral excitotoxic lesions of the pedunculopontine tegmental nucleus on responding to sucrose reward, Behavioural Brain Research, 134, 1-2, 2002. Crossref

  68. Walker S.C., Winn P., An assessment of the contributions of the pedunculopontine tegmental and cuneiform nuclei to anxiety and neophobia, Neuroscience, 150, 2, 2007. Crossref

  69. Gastard Myriam, Jensen Sarah L, Martin III John R, Williams Evelyn A, Zahm Daniel S, The caudal sublenticular region/anterior amygdaloid area is the only part of the rat forebrain and mesopontine tegmentum occupied by magnocellular cholinergic neurons that receives outputs from the central division of extended amygdala, Brain Research, 957, 2, 2002. Crossref

  70. Winn Philip, Frontal syndrome as a consequence of lesions in the pedunculopontine tegmental nucleus: A short theoretical review, Brain Research Bulletin, 47, 6, 1998. Crossref

  71. Bayer L, Risold P.Y, Griffond B, Fellmann D, Rat diencephalic neurons producing melanin-concentrating hormone are influenced by ascending cholinergic projections, Neuroscience, 91, 3, 1999. Crossref

  72. Inglis Wendy L, Olmstead Mary C, Robbins Trevor W, Selective deficits in attentional performance on the 5-choice serial reaction time task following pedunculopontine tegmental nucleus lesions, Behavioural Brain Research, 123, 2, 2001. Crossref

  73. Hirsch Etienne C., Périer Céline, Orieux Gaël, François Chantal, Féger Jean, ome Yelnik Jér⩽, Vila Miquel, Levy Richard, Tolosa Eduardo S., Marin Concepcio, Herrero M. Trinidad, Obeso José A., Agid Yves, Metabolic effects of nigrostriatal denervation in basal ganglia, Trends in Neurosciences, 23, 2000. Crossref

  74. Strazielle Catherine, Jazi Rozat, Verdier Yann, Qian Sue, Lalonde Robert, Regional brain metabolism with cytochrome c oxidase histochemistry in a PS1/A246E mouse model of autosomal dominant Alzheimer's disease: Correlations with behavior and oxidative stress, Neurochemistry International, 55, 8, 2009. Crossref

  75. Lokwan S.J.A, Overton P.G, Berry M.S, Clark D, Stimulation of the pedunculopontine tegmental nucleus in the rat produces burst firing in A9 dopaminergic neurons, Neuroscience, 92, 1, 1999. Crossref

  76. Samson Herman H., Chappell Ann, Injected muscimol in pedunculopontine tegmental nucleus alters ethanol self-administration, Alcohol, 23, 1, 2001. Crossref

  77. Arnold Jonathon C, Topple Ann N, Mallet Paul E, Hunt Glenn E, McGregor Iain S, The distribution of cannabinoid-induced Fos expression in rat brain: differences between the Lewis and Wistar strain, Brain Research, 921, 1-2, 2001. Crossref

  78. Mena-Segovia Juan, Bolam J. Paul, Magill Peter J., Pedunculopontine nucleus and basal ganglia: distant relatives or part of the same family?, Trends in Neurosciences, 27, 10, 2004. Crossref

  79. Satorra-Marı́n Núria, Coll-Andreu Margalida, Portell-Cortés Isabel, Aldavert-Vera Laura, Morgado-Bernal Ignacio, Impairment of two-way active avoidance after pedunculopontine tegmental nucleus lesions: effects of conditioned stimulus duration, Behavioural Brain Research, 118, 1, 2001. Crossref

  80. Zhang Qiao Jun, Liu Jian, Wang Yong, Wang Shuang, Wu Zhong Heng, Yan Wei, Hui Yan Ping, Ali Umar, The firing activity of presumed cholinergic and non-cholinergic neurons of the pedunculopontine nucleus in 6-hydroxydopamine-lesioned rats: An in vivo electrophysiological study, Brain Research, 1243, 2008. Crossref

  81. Yan Wei, Zhang Qiao Jun, Liu Jian, Wang Tao, Wang Shuang, Liu Xin, Chen Li, Gui Zhen Hua, The neuronal activity of thalamic parafascicular nucleus is conversely regulated by nigrostriatal pathway and pedunculopontine nucleus in the rat, Brain Research, 1240, 2008. Crossref

  82. Okada Ken-ichi, Kobayashi Yasushi, Reward and Behavioral Factors Contributing to the Tonic Activity of Monkey Pedunculopontine Tegmental Nucleus Neurons during Saccade Tasks, Frontiers in Systems Neuroscience, 10, 2016. Crossref

  83. Mori Fumika, Okada Ken-ichi, Nomura Taishin, Kobayashi Yasushi, The Pedunculopontine Tegmental Nucleus as a Motor and Cognitive Interface between the Cerebellum and Basal Ganglia, Frontiers in Neuroanatomy, 10, 2016. Crossref

  84. Vitale F., Mattei C., Capozzo A., Pietrantoni I., Mazzone P., Scarnati E., Cholinergic excitation from the pedunculopontine tegmental nucleus to the dentate nucleus in the rat, Neuroscience, 317, 2016. Crossref

  85. Kobayashi Yasushi, Inoue Yuka, Yamamoto Masaru, Isa Tadashi, Aizawa Hiroshi, Contribution of Pedunculopontine Tegmental Nucleus Neurons to Performance of Visually Guided Saccade Tasks in Monkeys, Journal of Neurophysiology, 88, 2, 2002. Crossref

  86. Nicola Saleem M., Yun Irene A., Wakabayashi Ken T., Fields Howard L., Cue-Evoked Firing of Nucleus Accumbens Neurons Encodes Motivational Significance During a Discriminative Stimulus Task, Journal of Neurophysiology, 91, 4, 2004. Crossref

  87. Matsumura Masaru, Watanabe Katsushige, Effects of Reversible Blockade of Pedunculopontine Tegmental Nucleus on Voluntary Arm Movement in Monkey, in The Basal Ganglia VI, 54, 2002. Crossref

  88. Wilson David I. G., MacLaren Duncan A. A., Winn Philip, On the Relationships Between the Pedunculopontine Tegmental Nucleus, Corticostriatal Architecture, and the Medial Reticular Formation, in The Basal Ganglia IX, 58, 2009. Crossref

  89. Basal ganglia, in The Brain and Behavior, 2005. Crossref

  90. Brainstem, in The Brain and Behavior, 2005. Crossref

  91. Stone S., Hamani C., Lozano A. M., PPN Stimulation for Parkinson's Disease, in Textbook of Stereotactic and Functional Neurosurgery, 2009. Crossref

  92. Горбачевская А. И., СТРУКТУРНАЯ ОСНОВА ОБРАБОТКИ ИНФОРМАЦИИ В ПРОЕКЦИОННЫХ СИСТЕМАХ КАУДАЛЬНЫХ ЯДЕР СИСТЕМЫ БАЗАЛЬНЫХ ГАНГЛИЕВ, "Успехи физиологических наук", Успехи физиологических наук, 3, 2018. Crossref

  93. Ettaro Robert, Markovic Tamara, Daniels Derek, MacLaren Duncan AA, Clark Stewart D, Microinjection of urotensin II into the pedunculopontine tegmentum leads to an increase in the consumption of sweet tastants, Physiology & Behavior, 215, 2020. Crossref

  94. Nakano Katsuma, Kayahara Tetsuro, Tsutsumi Tomonari, Ushiro Hiroshi, Yonekawa Takahiro, Nagaoka Eiji, Distribution of Pontomesencephalic Neurons Projecting to the Medullary Reticular Areas and Spinal Cord in Relation to the Pedunculopontine Nucleus in the Monkey, in The Basal Ganglia VII, 52, 2002. Crossref

  95. Jellinger K. A., Morphological substrates of mental dysfunction in Lewy body disease: an update, in Advances in Dementia Research, 2000. Crossref

  96. O'Doherty John P., Cockburn Jeffrey, Pauli Wolfgang M., Learning, Reward, and Decision Making, Annual Review of Psychology, 68, 1, 2017. Crossref

  97. Basal ganglia, in The Brain and Behavior, 2010. Crossref

  98. Brainstem, in The Brain and Behavior, 2010. Crossref

  99. Braak Heiko, Del Tredici Kelly, Non‐Dopaminergic Pathology of Parkinson's Disease, in Parkinson's Disease, 2011. Crossref

  100. Hamani Clement, Aziz Tipu, Bloem Bastiaan R., Brown Peter, Chabardes Stephan, Coyne Terry, Foote Kelly, Garcia-Rill Edgar, Hirsch Etienne C., Lozano Andres M., Mazzone Paolo A.M., Okun Michael S., Hutchison William, Silburn Peter, Zrinzo Ludvic, Alam Mesbah, Goetz Laurent, Pereira Erlick, Rughani Anand, Thevathasan Wesley, Moro Elena, Krauss Joachim K., Pedunculopontine Nucleus Region Deep Brain Stimulation in Parkinson Disease: Surgical Anatomy and Terminology, Stereotactic and Functional Neurosurgery, 94, 5, 2016. Crossref

  101. Smith Yoland, Functional Anatomy of the Motor and Non‐Motor Circuitry of the Basal Ganglia, in Parkinson's Disease, 2011. Crossref

  102. Jerlhag Elisabet, Egecioglu Emil, Dickson Suzanne L., Svensson Lennart, Engel Jörgen A., Alpha-conotoxin MII-sensitive nicotinic acetylcholine receptors are involved in mediating the ghrelin-induced locomotor stimulation and dopamine overflow in nucleus accumbens, European Neuropsychopharmacology, 18, 7, 2008. Crossref

Портал Begell Электронная Бибилиотека e-Книги Журналы Справочники и Сборники статей Коллекции Цены и условия подписки Begell House Контакты Language English 中文 Русский Português German French Spain