Доступ предоставлен для: Guest
Critical Reviews™ in Neurobiology

Выходит 3 номеров в год

ISSN Печать: 0892-0915

ISSN Онлайн: 2375-0014

SJR: 0.121

Neurodegenerative Disorders: Clues from Glutamate and Energy Metabolism

Том 10, Выпуск 2, 1996, pp. 239-263
DOI: 10.1615/CritRevNeurobiol.v10.i2.50
Get accessGet access

Краткое описание

It is well established that glutamate receptors play a major role in mediating acute ischemic neuronal degeneration in the CNS. Cerebral ischemia and head or spinal cord trauma are associated with excessive release and extracellular accumulation of glutamate, which leads to persistent activation of glutamate receptors and acute neurotoxic degeneration of the hyperstimulated neuron. It has been more difficult to link neuronal degeneration that occurs in chronic neurodegenerative disorders to an excitotoxic mechanism. However, accumulating evidence suggests that impairment of intracellular energy metabolism associated with hyperactivation of glutamate receptors may be a common mechanism contributing to neuronal death in such disorders. It is proposed that impaired energy metabolism results in deterioration of membrane function and loss of the voltage-dependent Mg2+ block of N-methyl-D-aspartate receptors, which allows persistent activation of these receptors by glutamate, even if concentrations of glutamate at the receptor are within the normal physiological range. Studies in rodents using mitochondrial respiratory chain toxins, such as aminooxyacetic acid, l-methyl-4-phenylpyridinium ion, malonic acid, and 3-nitropropionic acid, suggest that these agents do induce CNS degeneration by a process involving an excitotoxic mechanism. Striatal and nigral degeneration induced by mitochondrial toxins in rodents resembles neuropathology seen in humans suffering from Huntington's or Parkinson's disease and can be attenuated by glutamate receptor antagonists and agents that improve energy metabolism. Such experimental observations suggest that disturbed energy metabolism and glutamate may be involved in neuronal death leading to abiotrophic/neurodegenerative disorders in humans. If so, glutamate antagonists or agents that improve energy metabolism may slow the degenerative process and offer a therapeutic approach for temporarily retarding the progression of these disabling disorders.

ЦИТИРОВАНО В
  1. IKONOMIDOU CHRYSANTHY, TURSKI LECHOSLAW, Pharmacology of the AMPA Antagonist 2,3-Dihydroxy-6-Nitro-7-Sulfamoylbenzo-(F)-Quinoxaline, Annals of the New York Academy of Sciences, 825, 1 Neuroprotecti, 1997. Crossref

  2. Zhenochin S. P., Piotrovsky L. B., Dumpis M. A., Maximyuk O. P., Lishko P. V., Tsyndrenko A. Ya., Krishtal O. A., Analogs of a superacidic NMDA receptor agonist, N-phthalamoyl-L-glutamic acid (PhGA): Activity and mode of interaction with the receptor recognition site, Neurophysiology, 31, 5, 1999. Crossref

  3. Jost Carolina R., Van der Zee Catharina E. E. M., In ‘t Zandt Henricus J. A., Oerlemans Frank, Verheij Michel, Streijger Femke, Fransen Jack, Heerschap Arend, Cools Alexander R., Wieringa Bé, Creatine kinase B-driven energy transfer in the brain is important for habituation and spatial learning behaviour, mossy fibre field size and determination of seizure susceptibility, European Journal of Neuroscience, 15, 10, 2002. Crossref

  4. Kim Sunoh, Kim Taehyun, Ahn Kwangseog, Park Woo-Kyu, Nah Seung-Yeol, Rhim Hyewhon, Ginsenoside Rg3 antagonizes NMDA receptors through a glycine modulatory site in rat cultured hippocampal neurons, Biochemical and Biophysical Research Communications, 323, 2, 2004. Crossref

  5. Jung Cheolwha, Higgins Cynthia M. J., Xu Zuoshang, Mitochondrial electron transport chain complex dysfunction in a transgenic mouse model for amyotrophic lateral sclerosis, Journal of Neurochemistry, 83, 3, 2002. Crossref

  6. SCALLET A.C., NONY P.L., ROUNTREE R.L., BINIENDA Z.K., Biomarkers of 3-Nitropropionic Acid (3-NPA)-Induced Mitochondrial Dysfunction as Indicators of Neuroprotection, Annals of the New York Academy of Sciences, 939, 1, 2006. Crossref

  7. Dunlop John, Zaleska Margaret M, Eliasof Scott, Moyer John A, Excitatory amino acid transporters as emerging targets for central nervous system therapeutics, Emerging Therapeutic Targets, 3, 4, 1999. Crossref

  8. PRZYBYLA-ZAWISLAK BEATA D., THORN BRETT T., ALI SYED F., DENNIS RICHARD A., AMATO ANTONINO, VIRMANI ASHRAF, BINIENDA ZBIGNIEW K., Identification of Rat Hippocampal mRNAs Altered by the Mitochondrial Toxicant, 3-NPA, Annals of the New York Academy of Sciences, 1053, 1, 2008. Crossref

  9. Bywood Petra T., Johnson Stephen M., Catecholamine neuron groups in rat brain slices differ in their susceptibility to excitatory amino acid induced dendritic degeneration, Neurotoxicity Research, 3, 6, 2001. Crossref

  10. McNaught Kevin St.P, Jenner Peter, Extracellular accumulation of nitric oxide, hydrogen peroxide, and glutamate in astrocytic cultures following glutathione depletion, complex I inhibition, and/or lipopolysaccharide-induced activation, Biochemical Pharmacology, 60, 7, 2000. Crossref

  11. Nah Seung-Yeol, Kim Dong-Hyun, Rhim Hyewhon, Ginsenosides: Are Any of them Candidates for Drugs Acting on the Central Nervous System?, CNS Drug Reviews, 2007. Crossref

  12. Lee Moonhee, Jantaratnotai Nattinee, McGeer Edith, McLarnon James G., McGeer Patrick L., Mg2+ ions reduce microglial and THP-1 cell neurotoxicity by inhibiting Ca2+ entry through purinergic channels, Brain Research, 1369, 2011. Crossref

  13. Halbach O.von Bohlen und, Schober A, Krieglstein K, Genes, proteins, and neurotoxins involved in Parkinson’s disease, Progress in Neurobiology, 73, 3, 2004. Crossref

  14. Naskar Rita, Dreyer Evan B, New Horizons in Neuroprotection, Survey of Ophthalmology, 45, 2001. Crossref

  15. Rubio-Osornio M., Montes S., Pérez-Severiano F., Aguilera P., Floriano-Sánchez E., Monroy-Noyola A., Rubio C., Ríos C., Copper reduces striatal protein nitration and tyrosine hydroxylase inactivation induced by MPP+ in rats, Neurochemistry International, 54, 7, 2009. Crossref

  16. Roux Christian, Aligny Caroline, Lesueur Céline, Girault Virginie, Brunel Valery, Ramdani Yasmina, Genty Damien, Driouich Azeddine, Laquerrière Annie, Marret Stéphane, Brasse-Lagnel Carole, Gonzalez Bruno J., Bekri Soumeya, NMDA receptor blockade in the developing cortex induces autophagy-mediated death of immature cortical GABAergic interneurons: An ex vivo and in vivo study in Gad67-GFP mice, Experimental Neurology, 267, 2015. Crossref

  17. Zinger Anna, Barcia Carlos, Herrero Maria Trinidad, Guillemin Gilles J., The Involvement of Neuroinflammation and Kynurenine Pathway in Parkinson's Disease, Parkinson's Disease, 2011, 2011. Crossref

  18. Schmuck Gabriele, Freyberger Alexius, Ahr Hans-Jürgen, Stahl Bernhard, Kayser Martin, Effects of the New Herbicide Fentrazamide on the Glucose Utilization in Neurons and Erythrocytes In Vitro, NeuroToxicology, 24, 1, 2003. Crossref

  19. Rizzardini Milena, Mangolini Alessandra, Lupi Monica, Ubezio Paolo, Bendotti Caterina, Cantoni Lavinia, Low levels of ALS-linked Cu/Zn superoxide dismutase increase the production of reactive oxygen species and cause mitochondrial damage and death in motor neuron-like cells, Journal of the Neurological Sciences, 232, 1-2, 2005. Crossref

  20. Fritz K.I, Mishra O.P, Delivoria-Papadopoulos M, Mg2+-dependent modification of the N-methyl-d-aspartate receptor following graded hypoxia in the cerebral cortex of newborn piglets, Neuroscience, 92, 2, 1999. Crossref

  21. Leahy Kevin P., Davies Kelvin J.A., Dull Maude, Kort Jens J., Lawrence Katharine W., Crawford Dana R., adapt78, a Stress-Inducible mRNA, Is Related to the Glucose-Regulated Protein Family of Genes, Archives of Biochemistry and Biophysics, 368, 1, 1999. Crossref

  22. Deng Yun-Ping, Shelby Evan, Reiner Anton J., Immunohistochemical localization of AMPA-type glutamate receptor subunits in the striatum of rhesus monkey, Brain Research, 1344, 2010. Crossref

  23. Bywood Petra T., Johnson Stephen M., Mitochondrial Complex Inhibitors Preferentially Damage Substantia Nigra Dopamine Neurons in Rat Brain Slices, Experimental Neurology, 179, 1, 2003. Crossref

  24. Luo Yue, Kaur Charanjit, Ling Eng-Ang, Neuronal and glial response in the rat hypothalamus–neurohypophysis complex with streptozotocin-induced diabetes, Brain Research, 925, 1, 2002. Crossref

  25. Nasr Payman, Gursahani Hemamalini I., Pang Zhen, Bondada Vimala, Lee Jaewon, Hadley Robert W., Geddes James W., Influence of cytosolic and mitochondrial Ca2+, ATP, mitochondrial membrane potential, and calpain activity on the mechanism of neuron death induced by 3-nitropropionic acid, Neurochemistry International, 43, 2, 2003. Crossref

  26. Basu Niladri, Scheuhammer Anton M., Rouvinen-Watt Kirsti, Grochowina Nicole, Evans R. Douglas, O’Brien Mike, Chan Hing Man, Decreased N-methyl-d-aspartic acid (NMDA) receptor levels are associated with mercury exposure in wild and captive mink, NeuroToxicology, 28, 3, 2007. Crossref

  27. Yoshikawa Takayoshi, Sakaeda (nee Kakutani) Toshiyuki, Sugawara Tamio, Hirano Koichiro, Stella Valentino J, A novel chemical delivery system for brain targeting, Advanced Drug Delivery Reviews, 36, 2-3, 1999. Crossref

  28. Shin Tae-Joon, Hwang Sung-Hee, Choi Sun-Hye, Lee Byung-Hwan, Kang Jiyeon, Kim Hyeon-Joong, Zukin R. Suzanne, Rhim Hyewhon, Nah Seung-Yeol, Effects of Protopanaxatriol-Ginsenoside Metabolites on RatN-Methyl-D-Aspartic Acid Receptor-Mediated Ion Currents, The Korean Journal of Physiology & Pharmacology, 16, 2, 2012. Crossref

  29. Mocchegiani Eugenio, Bertoni-Freddari Carlo, Marcellini Fiorella, Malavolta Marco, Brain, aging and neurodegeneration: Role of zinc ion availability, Progress in Neurobiology, 75, 6, 2005. Crossref

  30. Bywood Petra T., Johnson Stephen M., Dendrite Loss Is a Characteristic Early Indicator of Toxin-Induced Neurodegeneration in Rat Midbrain Slices, Experimental Neurology, 161, 1, 2000. Crossref

  31. Vorwerk Christian K., Zurakowski David, McDermott Luann M., Mawrin Christian, Dreyer Evan B., Effects of axonal injury on ganglion cell survival and glutamate homeostasis, Brain Research Bulletin, 62, 6, 2004. Crossref

  32. Daval Jean-Luc, Pourié Grégory, Grojean Stéphanie, Lièvre Valérie, Strazielle Catherine, Blaise Sébastien, Vert Paul, Neonatal Hypoxia Triggers Transient Apoptosis Followed by Neurogenesis in the Rat CA1 Hippocampus, Pediatric Research, 55, 4, 2004. Crossref

  33. Meade C.A., Figueredo-Cardenas G., Fusco F., Nowak T.S., Pulsinelli W.A., Reiner A., Transient Global Ischemia in Rats Yields Striatal Projection Neuron and Interneuron Loss Resembling That in Huntington's Disease, Experimental Neurology, 166, 2, 2000. Crossref

  34. Deng Y.P., Xie J.P., Wang H.B., Lei W.L., Chen Q., Reiner A., Differential localization of the GluR1 and GluR2 subunits of the AMPA-type glutamate receptor among striatal neuron types in rats, Journal of Chemical Neuroanatomy, 33, 4, 2007. Crossref

  35. Przybyla-Zawislak Beata D., Kim Chung S., Ali Syed F., Slikker William, Binienda Zbigniew K., The differential JunB responses to inhibition of succinate dehydrogenase in rat hippocampus and liver, Neuroscience Letters, 381, 3, 2005. Crossref

  36. Kajta Malgorzata, Trotter Andreas, Lasoń Wladyslaw, Beyer Cordian, Effect of NMDA on staurosporine-induced activation of caspase-3 and LDH release in mouse neocortical and hippocampal cells, Developmental Brain Research, 160, 1, 2005. Crossref

  37. Moar Jacob Joseph, Hill Lawrence, Stewart Michael, Histopatholological Findings in a Fatal Case of Rinkhals Envenomation, American Journal of Forensic Medicine & Pathology, 37, 4, 2016. Crossref

  38. Mishkovsky Mor, Comment Arnaud, Hyperpolarized MRS: New tool to study real-time brain function and metabolism, Analytical Biochemistry, 529, 2017. Crossref

  39. Riesberg Lisa A., Weed Stephanie A., McDonald Thomas L., Eckerson Joan M., Drescher Kristen M., Beyond muscles: The untapped potential of creatine, International Immunopharmacology, 37, 2016. Crossref

  40. Zechel Sabrina, Werner Sandra, Unsicker Klaus, von Bohlen und Halbach Oliver, Expression and Functions of Fibroblast Growth Factor 2 (FGF-2) in Hippocampal Formation, The Neuroscientist, 16, 4, 2010. Crossref

  41. Bittigau Petra, Ikonomidou Chrysanthy, Topical Review: Glutamate in Neurologic Diseases, Journal of Child Neurology, 12, 8, 1997. Crossref

  42. Weiland Matthias, Mancuso Stefano, Baluska Frantisek, Signalling via glutamate and GLRs in Arabidopsis thaliana, Functional Plant Biology, 43, 1, 2016. Crossref

  43. Túnez Isaac, Tasset Inmaculada, Pérez-De La Cruz Verónica, Santamaría Abel, 3-Nitropropionic Acid as a Tool to Study the Mechanisms Involved in Huntington’s Disease: Past, Present and Future, Molecules, 15, 2, 2010. Crossref

  44. Jagannathan Pavan, Jagannathan Jay, Molecular mechanisms of traumatic brain injury in children, Neurosurgical Focus, 25, 4, 2008. Crossref

  45. Turski Gabrielle N., Ikonomidou Chrysanthy, Glutamate as a Neurotoxin, in Handbook of Neurotoxicity, 2014. Crossref

  46. Foley P., Riederer P., Pathogenesis and preclinical course of Parkinson’s disease, in Diagnosis and Treatment of Parkinson’s Disease — State of the Art, 56, 1999. Crossref

  47. Kostrzewa Richard M., Survey of Selective Neurotoxins, in Handbook of Neurotoxicity, 2014. Crossref

  48. Hanak Susan E., Reilly Erin M., Wotanis Jill, Zhu Bin, Pulicicchio Claudine, McMonagle-Strucko Kathleen, Wettstein Joseph G., Black Mark D., An Electrophysiological Model of Spinal Transmission Deficits in Mouse Experimental Autoimmune Encephalomyelitis, Journal of Pharmacology and Experimental Therapeutics, 308, 1, 2004. Crossref

  49. Oehmichen Manfred, Intoxikation, in Pathologie, 2012. Crossref

  50. Ikonomidou Chrysanthy, Turski Lechoslaw, Excitoxicity and excitatory amino acid antagonists in chronic neurodegenerative diseases, in Neurodegenerative Diseases, 2005. Crossref

  51. Unsicker K., Reuss B., von Bohlen und Halbach O., Fibroblast Growth Factors in Brain Functions, in Handbook of Neurochemistry and Molecular Neurobiology, 2006. Crossref

  52. Ghotbeddin Zohreh, Basir Zahra, Jamshidian Javad, Delfi Farideh, Modulation of behavioral responses and CA1 neuronal death by nitric oxide in the neonatal rat's hypoxia model, Brain and Behavior, 10, 11, 2020. Crossref

  53. Kim Dae Won, Yeo Seong-Il, Ryu Hea Jin, Kim Ji-Eun, Song Hong-Ki, Kwon Oh-Shin, Choi Soo Young, Kang Tae-Cheon, Effects of creatine and β-guanidinopropionic acid and alterations in creatine transporter and creatine kinases expression in acute seizure and chronic epilepsy models, BMC Neuroscience, 11, 1, 2010. Crossref

  54. Comment Arnaud, Merritt Matthew E., Hyperpolarized Magnetic Resonance as a Sensitive Detector of Metabolic Function, Biochemistry, 53, 47, 2014. Crossref

  55. Brenner Eric D., Martinez-Barboza Nora, Clark Alexandra P., Liang Quail S., Stevenson Dennis W., Coruzzi Gloria M., Arabidopsis Mutants Resistant to S(+)-β-Methyl-α, β-Diaminopropionic Acid, a Cycad-Derived Glutamate Receptor Agonist, Plant Physiology, 124, 4, 2000. Crossref

  56. Schuettauf Frank, Thaler Sebastian, Bolz Sylvia, Fries Julia, Kalbacher Hubert, Mankowska Anna, Zurakowski David, Zrenner Eberhart, Rejdak Robert, Alterations of amino acids and glutamate transport in the DBA/2J mouse retina; possible clues to degeneration, Graefe's Archive for Clinical and Experimental Ophthalmology, 245, 8, 2007. Crossref

  57. Hodaie Mojgan, Neimat Joseph S., Lozano Andres M., THE DOPAMINERGIC NIGROSTRIATAL SYSTEMAND PARKINSON'S DISEASE, Neurosurgery, 60, 1, 2007. Crossref

  58. Vitale F., Capozzo A., Mazzone P., Scarnati E., Neurophysiology of the pedunculopontine tegmental nucleus, Neurobiology of Disease, 128, 2019. Crossref

  59. Li Shijie, Lei Zhixin, Sun Taolei, The role of microRNAs in neurodegenerative diseases: a review, Cell Biology and Toxicology, 2022. Crossref

Портал Begell Электронная Бибилиотека e-Книги Журналы Справочники и Сборники статей Коллекции Цены и условия подписки Begell House Контакты Language English 中文 Русский Português German French Spain