Доступ предоставлен для: Guest
Interfacial Phenomena and Heat Transfer

Выходит 4 номеров в год

ISSN Печать: 2169-2785

ISSN Онлайн: 2167-857X

The Impact Factor measures the average number of citations received in a particular year by papers published in the journal during the two preceding years. 2017 Journal Citation Reports (Clarivate Analytics, 2018) IF: 0.5 To calculate the five year Impact Factor, citations are counted in 2017 to the previous five years and divided by the source items published in the previous five years. 2017 Journal Citation Reports (Clarivate Analytics, 2018) 5-Year IF: 0.8 The Immediacy Index is the average number of times an article is cited in the year it is published. The journal Immediacy Index indicates how quickly articles in a journal are cited. Immediacy Index: 0.2 The Eigenfactor score, developed by Jevin West and Carl Bergstrom at the University of Washington, is a rating of the total importance of a scientific journal. Journals are rated according to the number of incoming citations, with citations from highly ranked journals weighted to make a larger contribution to the eigenfactor than those from poorly ranked journals. Eigenfactor: 0.00018 The Journal Citation Indicator (JCI) is a single measurement of the field-normalized citation impact of journals in the Web of Science Core Collection across disciplines. The key words here are that the metric is normalized and cross-disciplinary. JCI: 0.11 SJR: 0.286 SNIP: 1.032 CiteScore™:: 1.6 H-Index: 10

Indexed in

INFLUENCE OF INTERFACIAL PHENOMENA ON VISCOSITY AND THERMAL CONDUCTIVITY OF NANOFLUIDS

Том 7, Выпуск 2, 2019, pp. 151-165
DOI: 10.1615/InterfacPhenomHeatTransfer.2019031015
Get accessGet access

Краткое описание

This paper reviews theoretical and experimental studies of the effect of various parameters of nanofluids on their thermal conductivity and viscosity. Parameters such as the volume concentration of nanoparticles, their size, temperature of nanofluid, etc., are considered here. The influence of interfacial phenomena on the thermophysical properties of nanofluids is considered in detail. The effect of an attached layer on the particle surfaces on the thermal conductivity and viscosity of nanofluids is analyzed qualitatively and quantitatively. It is shown that the nature of the decrease in thermal conductivity observed in some experiments in comparison with the theoretical values is related to the need to take into account the thermal contact resistance at the particle-liquid interface, in which the influence of the attached layer can lead to an anomalous increase in viscosity and formation of the rheological properties of nanofluids.

ЛИТЕРАТУРА
  1. Abdolbaqi, M.K., Azmi, W.H., Mamat, R., Sharma, K.V., and Najafi, G., Experimental Investigation of Thermal Conductivity and Electrical Conductivity of Bioglycol-Water Mixture based Al2O3 Nanofluid, Appl. Therm. Eng., vol. 102, pp. 932-941,2016.

  2. Angayarkanni, S.A. and Philip, J., Review on Thermal Properties of Nanofluids: Recent Developments, Adv. Colloid Interf. Sci., vol. 225, pp. 146-176,2015.

  3. Anoop, K.B., Kabelac, S., Sundararajan T., and Das, S.K., Rheological and Flow Characteristics of Nanofluids: Influence of Electroviscous Effects and Particle Agglomeration. J. Appl. Phys, vol. 106, no. 3, p. 034909,2009.

  4. Aubry, S., Kimmer, C.J., Skye, A., and Schelling, P.K., Comparison of Theoretical and Simulation-Based Predictions of Grain-Boundary Kapitza Conductance in Silicon, Phys. Rev. B, vol. 78, no. 6, p. 064112,2008.

  5. Aybar, H.S., Sharifpur, M., Azizian, M.R., Mehrabi, M., and Meyer, J.P., A Review of Thermal Conductivity Models for Nanofluids, Heat Transf.Eng., vol. 36,no. 13,pp. 1085-1110,2015.

  6. Bashirnezhad, K., Bazri, S., Safaei, M.R., Goodarzi, M., Dahari, M., Mahian, O., and Wongwises, S., Viscosity of Nanofluids: A Review of Recent Experimental Studies, Int. Commun. Heat Mass Transf, vol. 73, pp. 114-123,2016.

  7. Batchelor, G.K., The Effect of Brownian Motion on the Bulk Stress in a Suspension of Spherical Particles, J. FluidMech., vol. 83, no. 1,pp. 97-117,1977.

  8. Batchelor, G.K. and Green, J.T., The Determination of the Bulk Stress in a Suspension of Spherical Particles to Order C2, J. Fluid Mech., vol. 56, no. 3, pp. 401-427,1972.

  9. Bedeaux, D., Kapral, R., and Mazur, P., The Effective Shear Viscosity of a Uniform Suspension of Spheres, Physica A, vol. 88, no. 1,pp. 88-121,1977.

  10. Bigdeli, M.B., Fasano, M., Cardellini, A., Chiavazzo, E., and Asinari, P., A Review on the Heat and Mass Transfer Phenomena in Nanofluid Coolants with Special Focus on Automotive Applications, Renewable Sustainable Energy Rev., vol. 60, pp. 1615-1633,2016.

  11. Bruggeman, D.A.G., The Calculation of Various Physical Constants of Heterogeneous Substances. I. The Dielectric Constants and Conductivities of Mixtures Composed of Isotropic Substances, Ann. Phys, vol. 416, pp. 636-791,1935.

  12. Buongiorno, J., Venerus, D.C., Prabhat, N., McKrell, T., Townsend, J., Christianson, R., Tolmachev, Y.V., Keblinski, P., Hu, L.W., Alvarado, J.L., and Bang, I.C., A Benchmark Study on the Thermal Conductivity of Nanofluids, J. Appl. Phys, vol. 106, p. 094312,2009.

  13. Cahill, D.G., Braun, P.V., Chen, G., Clarke, D.R., Fan, S., Goodson, K.E., Keblinski, P., King, W.P., Mahan, G.D., Majumdar, A., and Maris, H.J., Nanoscale Thermal Transport. II. 2003-2012, Appl. Phys. Rev, vol. 1, p. 0011305,2014.

  14. Cahill, D.G., Ford, W.K., Goodson, K.E., Mahan, G.D., Majumdar, A., Maris, H.J., Merlin, R., and Phillpot, S.R., Nanoscale Thermal Transport, J. Appl. Phys, vol. 93, p. 793,2003.

  15. Chen, G., Nanoscale Energy Transfer and Conversion, Oxford, U.K.: Oxford University Press, 2005.

  16. Chen, H., Ding, Y., and Tan, C., Rheological Behavior of Nanofluids, New J. Phys, vol. 9, no. 10, p. 367,2007.

  17. Choi, S.U.S., Enhancing Thermal Conductivity of Fluids with Nanoparticles, in ASME Developments and Applications of Non-Newtonian Flows, D.A. Siginer and H.P. Wang, Eds., vol. FED 231/MD 66, pp. 99-105,1995.

  18. Das, S.K., Putra, N., Thiesen, P., and Roetzel, W., Temperature Dependence of Thermal Conductivity Enhancement of Nanofluids, ASME J. Heat Transf., vol. 125, pp. 567-574,2003.

  19. Derjaguin, B. and Landau, L., Theory of the Stability of Strongly Charged Lyophobic Sols and of the Adhesion of Strongly Charged Particles in Solutions of Electrolytes, Acta Physicochim, USSR, vol. 14, pp. 633-662,1941.

  20. Devendiran, D.K. and Amirtham, V.A., A Review on Preparation, Characterization, Properties and Applications of Nanofluids, Renewable Sustainable Energy Rev., vol. 60, pp. 21-40,2016.

  21. Dmitriev, A., Introduction to Nano-ThermalPhysics, Moscow: BINOM Laboratories, 2015 (in Russian).

  22. Dmitriev, A.S., Fluctuation Hydrodynamics, Thermophoresis ofNanoparticles and Heat Transfer in Nanofluids, in Proc. of the 3rd Micro/Nanoscale Heat Mass Transfer International Conference, Atlanta, GA, Paper No. MNHMT2012-75205,2012.

  23. Eapen, J., Williams, W.C., Buongiorno, J., Hu, L., and Yip, S., Mean-Field versus Microconvection Effects in Nanofluid Thermal Conduction, Phys. Rev. Lett., vol. 99, p. 095901,2007.

  24. Eastman, J.A., Choi, S.U.S., Li, S., and Thompson, L.J., Enhanced Thermal Conductivity through the Development of Nanofluids, in Proc. of the Symposium on Nanophase and Nanocomposite Materials II, vol. 457, Boston, MA: Materials Research Society, pp. 3-11,1997.

  25. Eastman, J.A., Choi, S.U.S., Li, S., Yu, W., and Thompson, L.J., Anomalously Increased Effective Thermal Conductivities of Ethylene Glycolbased Nanofluids Containing Copper Nanoparticles, Appl. Phys. Lett., vol. 78, pp. 718-720,2001.

  26. Einstein, A., A New Determination of Molecular Dimensions, Ann. Phys., vol. 19, pp. 289-306,1906.

  27. Esfe, M.H., Karimipour, A., Yan, W.M., Akbari, M., Safaei, M.R., and Dahari, M., Experimental Study on Thermal Conductivity of Ethylene Glycol based Nanofluids Containing Al2O3 Nanoparticles, Int. J. Heat Mass Transf, vol. 88, pp. 728-734,2015.

  28. Fan, J. and Wang, L., Effective Thermal Conductivity of Nanofluids: The Effects of Microstructure, J. Phys. D: Appl. Phys., vol. 43, no. 16, p. 165501,2010.

  29. Fedele, L., Colla, L., and Bobbo, S., Viscosity and Thermal Conductivity Measurements of Water-Based Nanofluids Containing Titanium Oxide Nanoparticles, Int. J. Refrig., vol. 35, no. 5, pp. 1359-1366,2012.

  30. Felderhof, B.U., The Effect of Brownian Motion on the Transport Properties of a Suspension of Spherical Particles, Physica A, vol. 118, nos. 1-3, pp. 69-78,1983.

  31. Fletcher, L.S., Recent Developments in Contact Conductance Heat Transfer, J. Heat Transf., vol. 110, no. 4b, pp. 1059-1070, 1988.

  32. Galliero, G. and Volz, S., Thermodiffusion in Model Nanofluids by Molecular Dynamics Simulations, J. Chem. Phys, vol. 128, no. 6, p. 064505,2008.

  33. Ge, Z.B., Cahill, D.G., and Braun, P. V., Thermal Conductance of Hydrophilic and Hydrophobic Interfaces, Phys. Rev. Lett., vol. 96, p. 186101,2006.

  34. Gupta, M., Arora, N., Kumar, R., Kumar, S., and Dilbaghi, N., A Comprehensive Review of Experimental Investigations of Forced Convective Heat Transfer Characteristics for Various Nanofluids, Int. J. Mech. Mater. Eng., vol. 9, no. 1, pp. 1-21,2014.

  35. Hamilton, R.L. and Crosser, O.K., Thermal Conductivity of Heterogeneous Two-Component Systems, Ind. Eng. Chem. Fundamen, vol. 1,no. 3, pp. 187-191,1962.

  36. He, Y., Jin, Y., Chen, H., Ding, Y., Cang, D., and Lu, H., Heat Transfer and Flow Behaviour of Aqueous Suspensions of TiO2 Nanoparticles (Nanofluids) Flowing Upward through a Vertical Pipe, Int. J. Heat Mass Transf., vol. 50, nos. 11-12, pp. 2272-2281,2007.

  37. Hoang, H. and Galliero, G., Shear Viscosity of Inhomogeneous Fluids, J. Chem. Phys, vol. 136, no. 12, p. 124902,2012.

  38. Hong, T., Yang, H., and Choi, C.J., Study of the Enhanced Thermal Conductivity of Fe Nanofluids, J. Appl. Phys., vol. 97, p. 06431114,2005.

  39. Huminic, A., Huminic, G., Fleaca, C., Dumitrache, F., and Morjan, I., Thermal Conductivity, Viscosity and Surface Tension of Nanofluids based on FeC Nanoparticles, Powder Technol., vol. 284, pp. 78-84,2015.

  40. Hunter, R.J., Zeta Potential in Colloid Science, London: Academic Press, 1981.

  41. Kakac, S. and Pramuanjaroenkij, A., Single-Phase and Two-Phase Treatments of Convective Heat Transfer Enhancement with Nanofluids-A State-of-the-Art Review, Int. J. Therm.. Sci., vol. 100, pp. 75-97,2016.

  42. Kapitza, P.L., The Study of Heat Transfer in Helium II, Zh. Eksp. Theor. Fiz., vol. 11, p. 1, 1941, (J. Phys., USSR, vol. 4., p. 181, 1941).

  43. Keblinski, P., Phillpot, S.R., Choi, S.U.S., and Eastman, J.A., Mechanisms of Heat Flow in Suspensions of Nano-Sized Particles (Nanofluids), Int. J. Heat Mass Transf, vol. 45, no. 4, pp. 855-863,2002.

  44. Khalatnikov, I.M., The Theory of Superfluidity, Moscow: Nauka, 1971 (in Russian).

  45. Khanafer, K. and Vafai, K., A Critical Synthesis of Thermophysical Characteristics of Nanofluids, Int. J. Heat Mass Transf., vol. 54, no. 19, pp. 4410-4428,2011.

  46. Kim, B.H., Beskok, A., and Cagin, T., Thermal Interactions in Nanoscale Fluid Flow: Molecular Dynamics Simulations with Solid-Liquid Interfaces, Microfluid. Nanofluid., vol. 5, no. 4, pp. 551-559,2008.

  47. Koca, H.D., Doganay, S., Turgut, A., Tavman, I.H., Saidur, R., and Mahbubul, I.M., Effect of Particle Size on the Viscosity of Nanofluids: A Review, Renewable Sustainable Energy Rev., vol. 82, pp. 1664-1674,2018.

  48. Kulkarni, D.P., Das, D.K., and Vajjha, R.S., Application of Nanofluids in Heating Buildings and Reducing Pollution, Appl. Energy, vol. 86, no. 12, pp. 2566-2573,2009.

  49. Kumar, P.M., Kumar, J., Tamilarasan, R., Sendhilnathan, S., and Suresh, S., Review on Nanofluids Theoretical Thermal Conductivity Models, Eng. J, vol. 19, no. 1, pp. 67-83,2015a.

  50. Kumar, V., Tiwari, A.K., and Ghosh, S.K., Application of Nanofluids in Plate Heat Exchanger: A Review, Energy Convers. Manage., vol. 105, pp. 1017-1036,2015b.

  51. Lee, S., Choi, S.U.S.,Li, S., and Eastman, J.A., Measuring Thermal Conductivity of Fuids Containing Oxide Nanoparticles, ASME J Heat Transf., vol. 121, pp. 280-289,1999.

  52. Li, C.H. and Peterson, G.P., Experimental Investigation of Temperature and Volume Fraction Variations on the Effective Thermal Conductivity ofNanoparticle Suspensions (Nanofluids), J. Appl. Phys, vol. 99, pp. 084314-1-084314-8,2006.

  53. Li, C.H. and Peterson, G.P., Mixing Effect on the Enhancement of the Effective Thermal Conductivity ofNanoparticle Suspensions (Nanofluids), Int. J. Heat Mass Transf., vol. 50, nos. 23-24, pp. 4668-4677,2007.

  54. Li, H., Wang, L., He, Y., Hu, Y., Zhu, J., and Jiang, B., Experimental Investigation of Thermal Conductivity and Viscosity of Ethylene Glycol based ZnO Nanofluids, Appl. Therm. Eng., vol. 88, pp. 363-368,2015.

  55. Lomascolo, M., Colangelo, G., Milanese, M., and de Risi, A., Review of Heat Transfer inNanofluids: Conductive, Convective and Radiative Experimental Results, Renewable Sustainable Energy Rev, vol. 43, pp. 1182-1198,2015.

  56. Lou, Z. and Yang, M., Molecular Dynamics Simulations on the Shear Viscosity of Al2O3 Nanofluids, Comput. Fluids, vol. 117, pp. 17-23,2015.

  57. Lyeo, H.-K. and Cahill, D.G., Thermal Conductance of Interfaces between Highly Dissimilar Materials, Phys. Rev. B, vol. 73, p. 144301,2006.

  58. Maxwell, J.C., A Treatise on Electricity and Magnetism, 2nd ed., Oxford, U.K.: Clarendon Press, 1881.

  59. Milanova, D. and Kumar, R., Role of Ions in Pool Boiling Heat Transfer of Pure and Silica Nanofluids, Appl. Phys. Lett., vol. 87, p. 233107,2005.

  60. Minakov, A.V., Rudyak, V.Y., and Pryazhnikov, M.I., About Rheology of Nanofluids, AIP Conf. Proc., vol. 2027, no. 1, p. 030141, 2018.

  61. Mishra, P.C., Mukherjee, S., Nayak, S.K., and Panda, A., A Brief Review on Viscosity of Nanofluids, Int. Nano Lett., vol. 4, no. 4, pp. 109-120,2014.

  62. Milton, G.W., The Theory of Composites, Mater. Technol., vol. 117, pp. 483-493,1995.

  63. Murshed, S., Leong, K., and Yang, C., Thermophysical and Electrokinetic Properties of Nanofluids-A Critical Review, Appl. Therm. Eng., vol. 28, pp. 2109-2125,2008.

  64. Murshed, S.M.S., Leong, K.C., and Yang, C., Enhanced Thermal Conductivity of TiO2-Water based Nanofluids, Int. J. Therm. Sci., vol. 44, pp. 367-373,2005.

  65. Nagatani, T., Statistical Theory of Effective Viscosity in a Random Suspension, J. Phys. Soc. Jpn., vol. 47, no. 1, pp. 320-326, 1979.

  66. Namburu, P.K., Kulkarni, D.P., Dandekar, A., and Das, D.K., Experimental Investigation of Viscosity and Specific Heat of Silicon Dioxide Nanofluids, Micro Nano Lett., vol. 2, no. 3, pp. 67-71,2007a.

  67. Namburu, P.K., Kulkarni, D.P., Misra, D., and Das, D.K., Viscosity of Copper Oxide Nanoparticles Dispersed in Ethylene Glycol and Water Mixture, Exp. Therm. Fluid Sci., vol. 32, no. 2, pp. 397-402,2007b.

  68. Nan, C.-W., Birringer, R., Clarke, D.R., and Gleiter, H., Effective Thermal Conductivity of Particulate Composites with Interfacial.

  69. Thermal Resistance, J. Appl. Phys., vol. 81, pp. 6692-6699,1997.

  70. Nguyen, C.T., Desgranges, F., Roy, G., Galanis, N., Mare, T., Boucher, S., and Mintsa, H.A., Temperature and Particle-Size Dependent Viscosity Data for Water-Based Nanofluids-Hysteresis Phenomenon, Int. J. Heat Fluid Flow, vol. 28, no. 6, pp. 1492-1506,2007.

  71. Novopashin, S.A., Serebryakova, M.A., and Sukhinin, G.I., Effect of the Kapitza Temperature Jump on Thermal Phenomena in Nanofluids, JETPLett., vol. 102, no. 8, pp. 518-519,2015.

  72. Pak, B.C. and Cho, Y.I., Hyrdrodynamic and Heat Transfer Study of Dispersed Fluids with Submicron Metallic Oxide Particles, Exp. Heat Transf, vol. 11, no. 2, pp. 151-170,1998.

  73. Pang, C., Lee, J.W., and Kang, Y.T., Review on Combined Heat and Mass Transfer Characteristics in Nanofluids, Int. J. Therm. Sci., vol. 87, pp. 49-67,2015.

  74. Pozhar, L.A., Structure and Dynamics of Nanofluids: Theory and Simulations to Calculate Viscosity, Phys. Rev. E, vol. 61, no. 2, p. 1432,2000.

  75. Rudyak, V.Ya., Belkin, A.A., and Egorov, V.V., On the Effective Viscosity of Nanosuspensions, Tech. Phys., vol. 54, no. 8, pp. 1102-1109,2009.

  76. Rudyak, V.Ya. and Krasnolutskii, S.L., Simulation of the Nanofluid Viscosity Coefficient by the Molecular Dynamics Method, Tech. Phys., vol. 60, no. 6, pp. 798-804,2015.

  77. Russo, A., Duran-Olivencia, M.A., Kalliadasis, S., and Hartkamp, R., Macroscopic Relations for Microscopic Properties at the Interface between Solid Substrates and Dense Fluids, J. Chem. Phys., vol. 150, no. 21, p. 214705,2019.

  78. Serebryakova, M.A., Dimov, S.V., Bardakhanov, S.P., and Novopashin, S.A., Thermal Conductivity, Viscosity and Rheology of a Suspension based on Al2O3 Nanoparticles and Mixture of 90% Ethylene Glycol and 10% Water, Int. J. Heat Mass Transf., vol. 83, pp. 187-191,2015.

  79. Serebryakova, M.A., Zaikovskii, A.V., Sakhapov, S.Z., Smovzh, D.V., Sukhinin, G.I., and Novopashin, S.A., Thermal Conductivity of Nanofluids based on Hollow y-Al2O3 Nanoparticles, and the Influence of Interfacial Thermal Resistance, Int. J. Heat Mass Transf., vol. 108, pp. 1314-1319,2017.

  80. Sharma, A.K., Tiwari, A.K., and Dixit, A.R., Rheological Behavior ofNanofluids: A Review, Renewable Sustainable Energy Rev., vol. 53, pp. 779-791,2016.

  81. Shukla, K.N., Koller, T.M., Rausch, M.H., and Froba, A.P., Effective Thermal Conductivity ofNanofluids-A New Model Taking into Consideration Brownian Motion, Int. J. Heat Mass Transf., vol. 99, pp. 532-540,2016.

  82. Smoluchowski, M., Theory of Fast Coagulation, vol. 7, Moscow, Russia, 1916 (in Russian).

  83. Solangi, K.H., Kazi, S.N., Luhur, M.R., Badarudin, A., Amiri, A., Sadri, R., Zubir, M.N.M., Gharahkhani, S., and Teng, K.H., A Comprehensive Review of Thermo-Physical Properties and Convective Heat Transfer to Nanofluids, Energy, vol. 89, pp. 1065-1086,2015.

  84. Sukhinin, G.I., Serebryakova, M.A., and Novopashin, S.A., Thermal Conductivity of Suspensions based on Core-Shell Particles, ASMEJ Heat Transf., vol. 138, no. 6, p. 064501,2016.

  85. Sundar, L.S., Ramana, E.V., Singh, M.K., and Sousa, A.C., Thermal Conductivity and Viscosity of Stabilized Ethylene Glycol and Water Mixture Al2O3 Nanofluids for Heat Transfer Applications: An Experimental Study, Int. Commun. Heat Mass Transf., vol. 56, pp. 86-95,2014.

  86. Syzrantsev, V.V., Zobov, K.V., Zavjalov, A.P., and Bardakhanov, S.P., The Associated Layer and Viscosity of Nanoliquids, Dokl. Phys, vol. 60, no. 1, pp. 46-48,2015.

  87. Terekhov, V.I., Kalinina, S.V., andLemanov, V.V., The Mechanism of Heat Transfer in Nanofluids: State-of-the-Art (Review). Part 1. Synthesis and Properties ofNanofluids, Thermophys. Aeromech., vol. 17,no. 1,pp. 1-14,2010.

  88. Timofeeva, E.V., Gavrilow, A.N., McCloskey, J.M., Tolmachev, Y.V., Sprunt, S., Loatina, L.M., and Selinger, J.V., Thermal Con-ductivity and Particle Agglomeration in Alumina Nanofluids: Experiment and Theory, Phys. Rev. E, vol. 76, pp. 061703-1-061703-16,2007.

  89. Timofeeva, E.V., Smith, D.S., Yu, W., France, D.M., Singh, D., and Routbort, J.L., Particle Size and Interfacial Effects on Thermo-Physical and Heat Transfer Characteristics of Water-Based a-SiC Nanofluids, Nanotechnology, vol. 21, no. 21, p. 215703, 2010.

  90. Torquato, S., Random Heterogeneous Media: Microstructure and Improved Bounds on Effective Properties, Appl. Mech. Rev, vol. 44, no. 2, pp. 37-76,1991.

  91. Vanaki, S.M., Ganesan, P., and Mohammed, H.A., Numerical Study of Convective Heat Transfer of Nanofluids: A Review, Renewable Sustainable Energy Rev., vol. 54, pp. 1212-1239,2016.

  92. Venerus, D.C., Buongiorno, J., Christianson, R., Jessica Townsend, J., Bang, I.C., Chen, G., Chung, S.J., Chyu, M., Chen, H., Ding, Y., Dubois, F., Dzido, G., Funfschilling, D., Galand, Q., Gao, J., Hong, H., Horton, M., Hu, L., Iorio, C.S., and Jarzebski, A.B., Viscosity Measurements on Colloidal Dispersions (Nanofluids) for Heat Transfer Applications, Appl. Rheol., vol. 20, no. 4, pp. 11-17,2010.

  93. Vladkov, M. and Barrat, J.L., Modeling Transient Absorption and Thermal Conductivity in a Simple Nanofluid, Nano Lett., vol. 6, no. 6, pp. 1224-1228,2006.

  94. Wang, B.X., Zhou, L.P., and Peng, X.F., A Fractal Model for Predicting the Effective Thermal Conductivity of Liquid with Suspension of Nanoparticles, Int. J. Heat Mass Transf., vol. 46, no. 14, pp. 2665-2672,2003.

  95. Wang, X., Xu, X., and Choi, S.U.S., Thermal Conductivity of Nanoparticle-Fluid Mixture, J. Thermophys. Heat Transf., vol. 13, pp. 474-480,1999.

  96. Wang, X.Q. and Mujumdar, A.S., Heat Transfer Characteristics of Nanofluids: A Review, Int. J. Therm. Sci., vol. 46, no. 1, pp. 1-19,2007.

  97. Wang, X., Xu, X., and Choi, S.U.S., Thermal Conductivity of Nanoparticle-Fluid Mixture, J. Thermophys. Heat Transf., vol. 13, no. 4, pp. 474-480,1999.

  98. Xu, J. and Yu, B., A New Model for Heat Conduction of Nanofluids based on Fractal Distributions of Nanoparticles, J. Phys. D: Appl. Phys., vol. 41, no. 13, p. 139801,2008.

  99. Xue, L., Keblinski, P., Phillpot, S.R., Choi, S.U.S., and Eastman, J.A., Effect of Liquid Layering at the Liquid-Solid Interface on Thermal Transport, Int. J. Heat Mass Transf., vol. 47, nos. 19-20, pp. 4277-4284,2004.

  100. Xuan, Y.M. and Li, Q., Heat Transfer Enhancement of Nanofluids, Int. J. Heat Fluid Flow, vol. 21, pp. 58-64,2000.

  101. You, S.M., Kim, J.H., and Kim, K.H., Effect of Nanoparticles on Critical Heat Flux of Water in Pool Boiling Heat Transfer, Appl. Phys. Lett., vol. 83, pp. 3374-3376,2003.

  102. Yu, W. and Choi, S.U.S., The Role of Interfacial Layers in the Enhanced Thermal Conductivity of Nanofluids: A Renovated Maxwell Model, J. Nanopart. Res., vol. 5, nos. 1-2, pp. 167-171,2003.

  103. Yu, W., France, D.M., Routbort, J.L., and Choi, S.U., Review and Comparison of Nanofluid Thermal Conductivity and Heat Transfer Enhancements, Heat Transf. Eng., vol. 29, no. 5, pp. 432-460,2008.

  104. Zakaria, I., Azmi, W.H., Mohamed, W.A.N.W., Mamat, R., and Najafi, G., Experimental Investigation of Thermal Conductivity and Electrical Conductivity of Al2O3 Nanofluid in Water-Ethylene Glycol Mixture for Proton Exchange Membrane Fuel Cell Application, Int. Commun. Heat Mass Transf., vol. 61, pp. 61-68,2015.

  105. Zav'yalov, A.P., Syzrantsev, V. V., Zobov, K.V., and Bardakhanov, S.P., Influence of Agglomeration on the Viscosity of Nanofluids, J. Eng. Phys. Thermophys., vol. 91, no. 1, pp. 115-123,2018.

ЦИТИРОВАНО В
  1. Makarova V. V., Gorbacheva S. N., Antonov S. V., Ilyin S. O., On the Possibility of a Radical Increase in Thermal Conductivity by Dispersed Particles, Russian Journal of Applied Chemistry, 93, 12, 2020. Crossref

  2. Karchevsky A. L., Cheverda V. V., Marchuk I. V., Gigola T. G., Sulyaeva V. S., Kabov O. A., Heat Flux Density Evaluation in the Region of Contact Line of Drop on a Sapphire Surface Using Infrared Thermography Measurements, Microgravity Science and Technology, 33, 4, 2021. Crossref

Портал Begell Электронная Бибилиотека e-Книги Журналы Справочники и Сборники статей Коллекции Цены и условия подписки Begell House Контакты Language English 中文 Русский Português German French Spain