Доступ предоставлен для: Guest
Портал Begell Электронная Бибилиотека e-Книги Журналы Справочники и Сборники статей Коллекции
International Journal of Fluid Mechanics Research
ESCI SJR: 0.206 SNIP: 0.446 CiteScore™: 0.5

ISSN Печать: 2152-5102
ISSN Онлайн: 2152-5110

Выпуски:
Том 46, 2019 Том 45, 2018 Том 44, 2017 Том 43, 2016 Том 42, 2015 Том 41, 2014 Том 40, 2013 Том 39, 2012 Том 38, 2011 Том 37, 2010 Том 36, 2009 Том 35, 2008 Том 34, 2007 Том 33, 2006 Том 32, 2005 Том 31, 2004 Том 30, 2003 Том 29, 2002 Том 28, 2001 Том 27, 2000 Том 26, 1999 Том 25, 1998 Том 24, 1997 Том 23, 1996 Том 22, 1995

International Journal of Fluid Mechanics Research

DOI: 10.1615/InterJFluidMechRes.2018025030
pages 187-197

NUMERICAL STUDY OF A JEFFREY FLUID OVER A POROUS STRETCHING SHEET WITH HEAT SOURCE/SINK

P. Venkata Satya Narayana
Department of Mathematics, SAS, VIT University, Vellore 632014, TN, India
D. Harish Babu
Department of Mathematics, Sree Vidyanikethan Engineering College, A. Rangampet, AP, India
M. Sudheer Babu
Department of Mathematics, Sree Vidyanikethan Engineering College, A. Rangampet, AP, India

Краткое описание

The mathematical analysis of 2D magnetohydrodynamic Jeffrey fluid flow over a permeable stretching surface in the presence of viscous dissipation and heat source/sink is made in this article. Using appropriate similarity transformations, the set of governing partial differential equations is transformed into a set of coupled nonlinear ordinary differential equations. The resulting equations along with boundary conditions are solved numerically using bvc4c method in MATLAB software. The velocity and high temperature distributions are broadly discussed with the help of graphs and tables in the presence of various physical parameters, such as magnetic field parameter (M), permeability parameter (K), heat source/sink parameter (Q), Eckert number (Ec), Prandtl number (Pr), Deborah number (β), and the ratio of relaxation and retardation times (λ). It is observed that the progress in Eckert number (i.e., viscous dissipations) corresponds to the increase in temperature and thermal boundary layer thickness, but it is opposite with Pr.

Ключевые слова: Jeffrey fluid, viscous dissipation, MHD, heat source/sink

Articles with similar content:

MIXED CONVECTION MHD HEAT AND MASS TRANSFER OVER A NONLINEAR STRETCHING VERTICAL SURFACE IN A NON-DARCIAN POROUS MEDIUM
Journal of Porous Media, Vol.17, 2014, issue 6
Rama Subba Reddy Gorla, Masoud Molaei Najafabadi
SECOND LAW ANALYSIS FOR COMBINED CONVECTION IN NON-NEWTONIAN FLUIDS OVER A VERTICAL WEDGE EMBEDDED IN A POROUS MEDIUM
Journal of Porous Media, Vol.15, 2012, issue 2
P. V. S. N. Murthy, Waqar Khan, Ali J. Chamkha, Rama Subba Reddy Gorla
FREE CONVECTION HEAT AND MASS TRANSFER OF A NANOFLUID PAST A HORIZONTAL CYLINDER EMBEDDED IN A NON-DARCY POROUS MEDIUM
Journal of Porous Media, Vol.21, 2018, issue 3
V. Ramachandra Prasad, A. Subba Rao, M. Rashidi, O. Anwar Bég
MHD NATURAL CONVECTION BOUNDARY LAYER FLOW OF NANOFLUID OVER A VERTICAL CONE WITH CHEMICAL REACTION AND SUCTION/INJECTION
Computational Thermal Sciences: An International Journal, Vol.9, 2017, issue 2
Patakota Sudarsana Reddy, Ali J. Chamkha, P. Sreedevi
FINITE ELEMENT SIMULATION OF UNSTEADY THIRD−GRADE FLOW WITH TEMPERATURE−DEPENDENT FLUID PROPERTIES
Journal of Porous Media, Vol.19, 2016, issue 3
Rama Bhargava, Minakshi Poonia