Доступ предоставлен для: Guest
Портал Begell Электронная Бибилиотека e-Книги Журналы Справочники и Сборники статей Коллекции
International Journal of Fluid Mechanics Research
ESCI SJR: 0.206 SNIP: 0.446 CiteScore™: 0.9

ISSN Печать: 2152-5102
ISSN Онлайн: 2152-5110

Выпуски:
Том 47, 2020 Том 46, 2019 Том 45, 2018 Том 44, 2017 Том 43, 2016 Том 42, 2015 Том 41, 2014 Том 40, 2013 Том 39, 2012 Том 38, 2011 Том 37, 2010 Том 36, 2009 Том 35, 2008 Том 34, 2007 Том 33, 2006 Том 32, 2005 Том 31, 2004 Том 30, 2003 Том 29, 2002 Том 28, 2001 Том 27, 2000 Том 26, 1999 Том 25, 1998 Том 24, 1997 Том 23, 1996 Том 22, 1995

International Journal of Fluid Mechanics Research

DOI: 10.1615/InterJFluidMechRes.v32.i6.10
pages 635-661

Multiparameter Perturbation Analysis of Unsteady Oscillatory Magnetoconvection in Porous Media with Heat Source Effects

O. Anwar Bég
Fluid Mechanics, Nanosystems and Propulsion, Aeronautical and Mechanical Engineering, School of Computing, Science and Engineering, Newton Building, University of Salford, Manchester M54WT, United Kingdom
Harmindar S. Takhar
Engineering Department, Manchester Metropolitan University, Oxford Rd., Manchester, M15GD, UK
Ajay Kumar Singh
Department of Mathematics, C. L. Jain College, Firozabad-283 203, India

Краткое описание

Unsteady natural convection flow of a viscous, incompressible, electrically conducting fluid past an infinite vertical porous plate embedded within a saturated, highly porous medium under the influence of a uniform magnetic field, Eckert heating, and a heat-absorbing sink is studied. It is assumed that the suction velocity is subjected to small-amplitude oscillations in time about the steady nonzero mean suction velocity. Approximate solutions for the velocity and temperature field are obtained using the multiparameter perturbation technique. Expressions for skin friction and rate of heat transfer are also derived. Mean temperatures are boosted by both magnetic field and heat-source parameter, but are lowered by a rise in the Prandtl number, Grashof number, and permeability parameter (k). The effects of all parameters on velocity, temperature, skin friction, and heat transfer rate (Nusselt number) are graphically presented and tabulated, and are discussed in detail. The model finds applications in nuclear heat transfer processes, metallurgy, aerospace/aval propulsion, and energy systems.


Articles with similar content: