Доступ предоставлен для: Guest
International Journal of Fluid Mechanics Research
Главный редактор: Atle Jensen (open in a new tab)
Заместитель главного редактора: Valery Oliynik (open in a new tab)
Редактор-основатель: Victor T. Grinchenko (open in a new tab)

Выходит 6 номеров в год

ISSN Печать: 2152-5102

ISSN Онлайн: 2152-5110

The Impact Factor measures the average number of citations received in a particular year by papers published in the journal during the two preceding years. 2017 Journal Citation Reports (Clarivate Analytics, 2018) IF: 1.1 To calculate the five year Impact Factor, citations are counted in 2017 to the previous five years and divided by the source items published in the previous five years. 2017 Journal Citation Reports (Clarivate Analytics, 2018) 5-Year IF: 1.3 The Eigenfactor score, developed by Jevin West and Carl Bergstrom at the University of Washington, is a rating of the total importance of a scientific journal. Journals are rated according to the number of incoming citations, with citations from highly ranked journals weighted to make a larger contribution to the eigenfactor than those from poorly ranked journals. Eigenfactor: 0.0002 The Journal Citation Indicator (JCI) is a single measurement of the field-normalized citation impact of journals in the Web of Science Core Collection across disciplines. The key words here are that the metric is normalized and cross-disciplinary. JCI: 0.33 SJR: 0.256 SNIP: 0.49 CiteScore™:: 2.4 H-Index: 23

Indexed in

Pulsating Laminar Flow in a Duct with Easily Penetrable Roughness near Walls

Том 28, Выпуск 1&2, 2001, pp. 164-172
DOI: 10.1615/InterJFluidMechRes.v28.i1-2.120
Get accessGet access

Краткое описание

Stabilized motion of a viscous fluid in a long plane duct with the easily penetrable roughness (EPR) over walls (i.e., a layer with a distributed mass force proportional to the local velocity) has been considered under the periodically changing pressure gradient. By means of an analytical solution in complex numbers, distributions of the velocity and shear stress have been plotted across the duct for different time moments with the absence or presence of the EPR. The influence of the EPR on the periodical flow appeared to be drastically dependent on the frequency of pressure changes. Results may be used in pneumatics or hydroautomatics, and in biological fluid mechanics.

Портал Begell Электронная Бибилиотека e-Книги Журналы Справочники и Сборники статей Коллекции Цены и условия подписки Begell House Контакты Language English 中文 Русский Português German French Spain