Доступ предоставлен для: Guest
Портал Begell Электронная Бибилиотека e-Книги Журналы Справочники и Сборники статей Коллекции
International Journal of Fluid Mechanics Research
ESCI SJR: 0.206 SNIP: 0.446 CiteScore™: 0.5

ISSN Печать: 2152-5102
ISSN Онлайн: 2152-5110

Том 46, 2019 Том 45, 2018 Том 44, 2017 Том 43, 2016 Том 42, 2015 Том 41, 2014 Том 40, 2013 Том 39, 2012 Том 38, 2011 Том 37, 2010 Том 36, 2009 Том 35, 2008 Том 34, 2007 Том 33, 2006 Том 32, 2005 Том 31, 2004 Том 30, 2003 Том 29, 2002 Том 28, 2001 Том 27, 2000 Том 26, 1999 Том 25, 1998 Том 24, 1997 Том 23, 1996 Том 22, 1995

International Journal of Fluid Mechanics Research

DOI: 10.1615/InterJFluidMechRes.2018021520
pages 229-238


Etim S. Udoetok
Mechanical Engineering Department, University of Uyo, Uyo, Akwa Ibom, Nigeria

Краткое описание

The accurate prediction of friction loss is very important in pipeline engineering, where the use of water lubrication for the transport of heavy crude oil is gaining ground. Theoretical analysis of pressure drop in liquid–liquid core–annular fluid flow is used to derive an expression for the multiphase Reynolds number that can be used in existing single-phase equations to determine the coefficient of friction loss. The multiphase Reynolds number shows that the liquid in contact with the pipe wall dominates the values. Results using the proposed model were compared to published experimental results and other models. The proposed model is more accurate and less complex, and it shades more light on core–annular fluid flow.

Ключевые слова: core–annular, multiphase, turbulent, friction, pressure drop


  1. Arney, M.S., Bai, R., Guevara, E., Joseph, D.D., and Liu, K., Friction Factor and Holdup Studies for Lubricated Pipelining. I: Experiments and Correlations, Int. J. Multiphase Flow, vol. 19, pp. 1061–1076, 1993.

  2. Arney, M.S., Ribeiro, G.S., Guevara, E., Bai, R., and Joseph, D.D., Cement-Lined Pipes for Water Lubricated Transport of Heavy Oil, Int. J. Multiphase Flow, vol. 22, no. 2, pp. 207–221, 1996.

  3. Bannwart, A.C., Modeling Aspect of Oil-Water Core-Annular Flows, J. Petrol. Sci. Eng., vol. 32, nos. 2-4, pp. 127–143, 2001.

  4. Bannwart, A.W., A Simple Model for Pressure Drop in Horizontal Core Annular Flow, J. Braz. Soc. Mech. Sci., vol. 21, no. 2, pp. 233–244, 1999.

  5. Gosh, S., Mandal, T.K., Das, G., and Das, P.K., Review of Oil Water Core Annular Flow, Renew. Sustain. Energy Rev., vol. 13, no. 8, pp. 1957–1965, 2009.

  6. Haaland, S.E., Simple and Explicit Formulas for the Friction Factor in Turbulent Flow, ASME J. Fluid Mech., vol. 105, no. 1, pp. 89–90, 1983.

  7. Joseph, D.D. and Renardy, Y.Y., Fundamentals of Two-Fluid Dynamics, Part II: Lubricated Transport, Drops and Miscible Liquids, New York: Springer, 1993.

  8. Joseph, D.D., Chen, K.P., and Renardy, Y.Y., Core-Annular Flows, Annu. Rev. Fluid Mech., vol. 29, pp. 65–90, 1997.

  9. Kolev, N.N., Multiphase Flow Dynamics 1: Fundamentals, Switzerland: Springer, 2015.

  10. Martinez-Palou, R., Mosqueira, M.L., Zapata-Rendon, B., Mar-Juarez, E., Bernal-Huicochea, C., Clavel-Lopez, J.C., and Aburto, J., Transport of Heavy and Extra-Heavy Crude Oil by Pipeline: A Review, J. Petrol. Sci. Eng., vol. 75, nos. 3-4, pp. 274–282, 2011.

  11. Minami, K. and Shoham, O., Transient Two-Phase Flow Behavior in Pipeline—Experiment and Modeling, Int. J. Multiphase Flow, vol. 20, no. 4, pp. 739–752, 1994.

  12. Oliemans, R.V.A. and Ooms, G., Core-Annular Flow of Oil and Water through a Pipeline, in Multiphase Science and Technology, A.K. Nayak, Ed., New York: Begell House, vol. 2, pp. 427–476, 1986.

  13. Oliemans, R.V.A., Ooms, G.,Wu, H.L., and Duijvestijn, A., Core-Annular Oil/Water Flow: The Turbulent-Lubricating-Film Model and Measurements in a 5 cm Pipe Loop, Int. J. Multiphase Flow, vol. 13, no. 1, pp. 23–31, 1987.

  14. Ooms, G., Segal, A., van der Wees, A.J., Meerhoff, R., and Oliemans, R.V.A., A Theoretical Model for Core-Annular Flow of a Very Viscous Core and a Water Annulus through a Horizontal Pipe, Int. J. Multiphase Flow, vol. 10, no. 1, pp. 41–60, 1984.

  15. Rodriguez, O.M.H., Bannwart, A.C., and de Carvalho, C.H.M., Pressure Loss in Core-Annular Flow: Modeling, Experimental Investigation and Full-Scale Experiments, J. Petrol. Sci., vol. 65, nos. 1-2, pp. 67–75, 2009.

  16. Russel, T.W.F. and Charles, M.E., The Effect of Less Viscous Liquid in the Laminar Flow of Two Immiscible Liquids, Can. J. Chem. Eng., vol. 37, no. 1, pp. 18–24, 1959.

  17. Sotgia, G., Tartarini, P., and Stalio, E., Experimental Analysis of Flow Regimes and Pressure Drop Reduction in Oil-Water Mixtures, Int. J. Multiphase Flow, vol. 34, no. 12, pp. 1161–1174, 2008.

  18. Vanegas-Prada, J.W. and Bannwart, A.C., Modeling of Vertical Core-Annular Flows and Application to Heavy Oil Production, ASME J. Energy Resour. Technol., vol. 123, no. 3, pp. 194–199, 2001.

  19. Xu, X., Study on Oil-Water Two-Phase Flow in Horizontal Pipelines, J. Petrol. Sci. Eng., vol. 59, nos. 1-2, pp. 43–58, 2007.

  20. Yusuf, N., Al-Wahaibi, Y., Al-Ajmi, A., Olawale, A.S., and Mohammed, I.A., Effect of Oil Viscosity on Flow Structure and Pressure Gradient in Horizontal Oil-Water Flow, Chem. Eng. Res. Des., vol. 90, no. 8, pp. 1019–1030, 2012.

Articles with similar content:

Second Thermal and Fluids Engineering Conference, Vol.43, 2017, issue
Bo Yu, Dongliang Sun, Yajun Deng, Yongtu Liang
Multiphase Science and Technology, Vol.16, 2004, issue 4
Neima Brauner, Amos Ullmann
Multiphase Science and Technology, Vol.3, 1987, issue 1-4
Graham B. Wallis
Journal of Porous Media, Vol.13, 2010, issue 11
Ridha B. Gharbi, Abdullah F. Alajmi, Robert Chase
Modelling of Fundamental Transfer Processes in Crude-Oil Fouling
International Heat Transfer Conference 15, Vol.54, 2014, issue
Geoffrey F. Hewitt, Wentian Zheng, Parth Manchanda, Junfeng Yang, Omar K. Matar