Доступ предоставлен для: Guest
Портал Begell Электронная Бибилиотека e-Книги Журналы Справочники и Сборники статей Коллекции
International Journal of Fluid Mechanics Research
ESCI SJR: 0.206 SNIP: 0.446 CiteScore™: 0.5

ISSN Печать: 2152-5102
ISSN Онлайн: 2152-5110

Выпуски:
Том 47, 2020 Том 46, 2019 Том 45, 2018 Том 44, 2017 Том 43, 2016 Том 42, 2015 Том 41, 2014 Том 40, 2013 Том 39, 2012 Том 38, 2011 Том 37, 2010 Том 36, 2009 Том 35, 2008 Том 34, 2007 Том 33, 2006 Том 32, 2005 Том 31, 2004 Том 30, 2003 Том 29, 2002 Том 28, 2001 Том 27, 2000 Том 26, 1999 Том 25, 1998 Том 24, 1997 Том 23, 1996 Том 22, 1995

International Journal of Fluid Mechanics Research

DOI: 10.1615/InterJFluidMechRes.v46.i4.40
pages 325-335

BOUNDARY LAYER PERTURBATIONS GENERATED BY LOCALLY DEFORMABLE SURFACE

Gennadii A. Voropayev
Institute of Hydromechanics of National Academy of Sciences of Ukraine, 8/4, Zhelyabov St., Kyiv, Ukraine
Iaroslav Zagumennyi
Institute of Hydromechanics of National Academy of Sciences of Ukraine, 8/4, Zhelyabov St., Kyiv, Ukraine

Краткое описание

Structure of eigen perturbations in a boundary layer is multiform even on a flat smooth surface varying from the Tollmien-Schlichting flat wave to complex three-dimensional vortex structures. All these perturbations either singly or in various combinations are responsible for sequence of transition stages to turbulence. Even successful efforts to control the transition process lead, as a rule, to a certain transformation of the process either in time or in space, but anyway, transition to turbulence is unavoidable. At the same time, by controlling vortex flow structure in a turbulent boundary layer formed over surfaces (LEBU, riblets, MEMs, compliant coating) one can change their integral characteristics. This presentation is focused on the numerical investigation of the development and transformation of forced perturbations in the boundary layer on the flat rigid surface based on direct numerical simulation of unsteady three-dimensional Navier-Stokes equations in a wide range of Reynolds numbers. Nonlinear analysis of the development of these regular local perturbations in terms of wavelength, phase speed and amplitude demonstrates a mandatory transition to irregular perturbations through a sequence of three-dimensional longitudinal coherent vortex structures at Reynolds numbers greater than the transitional ones. Sequence of transformations, structure, intensity, scale and life-time of these three-dimensional vortex structures can be controlled in the boundary layer by changing the parameters of forced local disturbances on the surface.

ЛИТЕРАТУРА

  1. Benjamin, T.B., Effects of a Flexible Boundary on Hydrodynamic Stability, J. FluidMech, vol. 9, pp. 513-530,1960. Betchov, R. and Criminale, W., Stability of Parallel Flows, London: Academic Press, 1967.

  2. Blick, E.F. and Walters, R.R., Turbulent Boundary Layer Characteristics of Compliant Surfaces, J. Aircraft, vol. 5, no. 1,pp. 11-16, 1968.

  3. Boiko, A., Grek, G., Dovgal, A., and Kozlov, V., The Origin of Turbulence in Near-Wall Flows, Berlin/Heidelberg/New York: Springer-Verlag, 2002.

  4. Carpenter, P., The Optimization of Multiple-Panel Compliant Walls for Delay Laminar-Turbulent Transition, AIAA J., vol. 31, pp. 1187-1188,1993.

  5. Choi, K.-S., Near-Wall Structures of Turbulent Boundary Layer with Spanwise-Wall Oscillation, Phys. Fluids, vol. 14, pp. 25-30, 2002.

  6. Duncan, J.H., Waxman, A.M., and Tulin, M.P., The Dynamics of Waves at the Interface between a Viscoelastic Coating and a Fluid Flow, J Fluid Mech, vol. 158, pp. 177-197,1985.

  7. Gad-el-Hak, M., The Response of Elastic and Viscoelastic Surfaces to a Turbulent Boundary Layer, Trans. ASME: J. Appl. Mech., vol. 55, pp. 206-211,1986.

  8. Hansen, R.J., Hunston, D.L., Ni, C.C., and Reischman, M.M., An Experimental Study of Flow-Generated Waves on a Flexible Surface, J. Sound Vib, vol. 68, no. 3, pp. 317-334,1980.

  9. Kornilov, V.I. and Boiko, A.V., ITAM Activities on Turbulent Boundary-Layer Control, Recent Progress and Problems, European Drag Reduction and Flow Control Meeting, Sept. 2-4,2010, Kyiv, Ukraine, pp. 34-35,2010.

  10. Kramer, M.O., Boundary Layer Stabilization by Distributed Damping, Nav. Eng. J., vol. 74, pp. 341-348,1962.

  11. Landahl, M.T., On the Stability of Laminar Incompressible Boundary Layer over a Flexible Surface, J. Fluid Mech., vol. 13, pp. 609-632,1962.

  12. Lissamen, P.B. and Gordon, L.H., Turbulent Skin Friction on Compliant Surfaces, AIAA Pap., no. 164, pp. 1-4,1969.

  13. Morkovin, M.V. and Reshotko, E., Dialogue on Progress and Issues in Stability and Transition Research (Opening Invited Lecture) ThirdIUTAMSymp. Laminar Turbulent Transition, Toulouse, France, pp. 1-24,1989.

  14. Nonweiler, T.R., Qualitative Solution of the Stability Equation for Boundary Layer in Contact with Forms of Flexible Surface, Aeronautical Research Council Current Papers, ARC Rep. no. 22.670, pp. 3-75,1963.

  15. Schlichting, H., Boundary Layer Theory, New York, NY: McGraw-Hill, 1960.

  16. Voropaev, G.A. and Babenko, V., Turbulent Gradient Flows on Compliant Surfaces, Proc. USSR Workshop on Hydrodynamic Stability and Turbulence, Novosibirsk: Springer-Verlag, pp. 186-190,1989.

  17. Voropayev, G.A. and Rozumnyuk, N.V., Turbulent Boundary Layer over a Compliant Surface, High Speed Body Motion in Water, AGARD Report 827, pp. 1-11, 1998.

  18. Voropayev, G.A., Zagumenniy, Ya.V., and May, C., Turbulent Boundary Layer over Compliant and Deformable Surface, ISSDR 2005, Busan, Korea, pp. 447-458,2005.

  19. Voropaev, G.A. and Zagumennyi, Ia.V., Wave and Vortex Structure of Transitional Boundary Layer over Deformable Surface, Physica Scripta, vol. 2010, no. T142, p. 014010,2010.

  20. Voropaev, G.A. and Zagumennyi, Ia.V., Boundary Layer Perturbations Generated by Locally Deformable Surface, Proc. 7th Int. Conf. on Vortex Flows and Vortex Models, Rostock, Germany, pp. 91-94, September 19-22,2016.