Доступ предоставлен для: Guest
Портал Begell Электронная Бибилиотека e-Книги Журналы Справочники и Сборники статей Коллекции
International Journal of Fluid Mechanics Research
ESCI SJR: 0.206 SNIP: 0.446 CiteScore™: 0.5

ISSN Печать: 2152-5102
ISSN Онлайн: 2152-5110

Выпуски:
Том 46, 2019 Том 45, 2018 Том 44, 2017 Том 43, 2016 Том 42, 2015 Том 41, 2014 Том 40, 2013 Том 39, 2012 Том 38, 2011 Том 37, 2010 Том 36, 2009 Том 35, 2008 Том 34, 2007 Том 33, 2006 Том 32, 2005 Том 31, 2004 Том 30, 2003 Том 29, 2002 Том 28, 2001 Том 27, 2000 Том 26, 1999 Том 25, 1998 Том 24, 1997 Том 23, 1996 Том 22, 1995

International Journal of Fluid Mechanics Research

DOI: 10.1615/InterJFluidMechRes.2019026403
pages 525-543

INHERENT IRREVERSIBILITY IN CU-H2O NANOFLUID COUETTE FLOW WITH VARIABLE VISCOSITY AND NONLINEAR RADIATIVE HEAT TRANSFER

R. L. Monaledi
Faculty of Military Science, Stellenbosch University, Private Bag X2, Saldanha 7395, South Africa
Oluwole Daniel Makinde
Faculty of Military Science, Stellenbosch University, Private Bag X2, Saldanha 7395, South Africa

Краткое описание

In this paper, the combined effects of thermal radiation, variable viscosity, nanoparticles shape, and volume fraction on the thermal performance and inherent irreversibility of a water-copper nanofluid Couette flows in a low aspect ratio microchannel have been investigated. The nonlinear governing equations are obtained and tackled numerically using shooting method with Runge-Kutta-Fehlberg integration scheme. The effects of various emerging thermophysical parameters on the nanofluid velocity and temperature profiles, skin friction, Nusselt number, thermal stability criteria with respect to critical Eckert number, entropy generation rate, and Bejan number are presented graphically and discussed. It is observed that both nanoparticles shapes and volume fraction have great influence on the nanofluids thermal stability and entropy generation rate. In addition, thermal radiation enhances the cooling and thermal stability of the nanofluid.

ЛИТЕРАТУРА

  1. Abolbashari, M.H., Freidoonimehr, N., Nazari, F., and Rashidi, M.M., Analytical Modeling of Entropy Generation for Casson Nanofluid Flow Induced by a Stretching Surface, Adv. Powder Technol., vol. 26, pp. 542-552,2015.

  2. Ali, A.O. and Makinde, O.D., Modelling the Effect of Variable Viscosity on Unsteady Couette flow of Nanofluids with Convective Cooling, J. Appl. FluidMech., vol. 8, no. 4, pp. 793-802,2015.

  3. Ali, A.O., Makinde, O.D., and Nkansah-Gyekye, Y., Numerical Study of Unsteady MHD Couette Flow and Heat Transfer of Nanofluids in a Rotating System with Convective Cooling, Int. J. Numer. Methods Heat Fluid Flow, vol. 26, no. 5, pp. 1567-1579,2016.

  4. Batcheor, G.K., An Introduction to Fluid Dynamics, Cambridge, UK: Cambridge University Press, 1967. Bejan, A., Entropy Generation Minimization, Boca Raton, FL: CRC Press, 1996.

  5. Bhatti, M.M., Sheikholeslami, M., and Zeeshan, A., Entropy Analysis on Electro-Kinetically Modulated Peristaltic Propulsion of Magnetized Nanofluid Flow through a Microchannel, Entropy, vol. 19, no. 9, p. 481,2017.

  6. Brinkman, H.C., The Viscosity of Concentrated Suspensions and Solutions, J. Chem. Phys, vol. 20, no. 4, p. 571,1952.

  7. Buongiorno, J., Convective Transport in Nanofluids, ASME J. Heat Transf, vol. 128, pp. 240-250,2006.

  8. Cebeci, T. and Bradshaw, P., Physical and Computational Aspects of Convective Heat Transfer, New York, NY: Springer, 1988.

  9. Choi, S.U.S., Enhancing Thermal Conductivity of Fluids with Nanoparticles, in Proc. 1995 ASME Int. Mech. Engng. Congress and Exposition, San Francisco, CA, vol. 66, pp. 99-105,1995.

  10. Das, S., Jana, R.N., and Makinde, O.D., MHD Flow of Cu-Al2O3/Water Hybrid Nanofluid in Porous Channel, Analysis of Entropy Generation, Defect Diffus. Forum, vol. 377, pp. 42-61,2017.

  11. Eegunjobi, A.S., Makinde, O.D., Tshehla, M.S., and Franks, O., Irreversibility Analysis of Unsteady Couette Flow with Variable Viscosity, J. Hydrodynam, vol. 27, no. 2, pp. 304-310,2015.

  12. Elias, M.M., Miqdad, M., Mahbubu,I.M., Saidur, R., Kamalisarvestani, M., Sohel, M.R., Hepbasli, A.,Rahim, N.A., and Amalina, M.A., Effect of Nanoparticle Shape on the Heat Transfer and Thermodynamic Performance of a Shell and Tube Heat Exchanger, Int. Commun. Heat Mass Transf., vol. 44, pp. 93-99,2013.

  13. Ellahi, R., Hassan, M., and Zeeshan, A., Shape Effects of Spherical and Nonspherical Nanoparticles in Mixed Convection Flow over a Vertical Stretching Permeable Sheet, Mech. Adv. Mater. Struct., vol. 24, no. 15, pp. 1231-1238,2017.

  14. Ellahi, R., Hassan, M., and Zeeshan, A., Shape Effects of Nanosize Particles in Cu-H2O Nanofluid on Entropy Generation, Int. J. Heat Mass Transf., vol. 81, pp. 449-456,2015.

  15. Hassan, M., Fetecau, C., Majeed, A., and Zeeshan, A., Effects of Iron Nanoparticles Shape on Convective Flow of Ferrofluid under Highly Oscillating Magnetic Field over Stretchable Rotating Disk, J Magn. Magn. Mater., vol. 465, pp. 531-539,2018.

  16. Johns, L.E. and Narayanan, R., Frictional Heating in Plane Couette Flow, Proc. R. Soc. A., vol. 453, pp. 1653-1670,1997.

  17. Keblinski, P., Phillpot, S.R., Choi, S.U.S., and Eastman, J.A., Mechanism of Heat Flow in Suspensions of Nano-Sized Particles (Nanofluids), Int. J. Heat Mass Transf., vol. 42, pp. 855-863,2002.

  18. Khalil, A.N.M, Ali, M.A.M., and Azmi, A.I., Effect of Al2O3 Nanolubricant with SDBS on Tool Wear during Turning Process of AISI 1050 with Minimal Quantity Lubricant, Proc. Manuf, vol. 2, pp. 130-134,2015.

  19. Leong, K.Y., Saidur, R., Kazi, S.N., and Mamun, A.H., Performance Investigation of an Automotive Car Radiator Operated with Nanofluid-Based Coolants (Nanofluid as a Coolant in a Radiator), Appl. Therm. Eng., vol. 30, nos. 17-18, pp. 2685-2692,2010.

  20. Makinde, O.D. and Onyejekwe, O., A Numerical Study of MHD Generalized Couette Flow and Heat Transfer with Variable Viscosity and Electrical Conductivity, J. Magn. Magn. Mater., vol. 323, no. 22, pp. 2757-2763,2011.

  21. Makinde, O.D., Effects of Viscous Dissipation and Newtonian Heating on Boundary Layer Flow of Nanofluids over a Flat Plate, Int. J. Numer. Methods Heat Fluid Flow, vol. 23, no. 8, pp. 1291-1303,2013.

  22. Makinde, O.D., Iskander, T., Mabood, F., Khan, W.A., and Tshehla, M.S., MHD Couette-Poiseuille Flow of Variable Viscosity Nanofluids in a Rotating Permeable Channel with Hall Effects, J. Mol. Liq., vol. 221, pp. 778-787,2016.

  23. Makinde, O.D., Thermal Decomposition of Unsteady Non-Newtonian MHD Couette Flow with Variable Properties, Int. J. Numer. Methods Heat Fluid Flow, vol. 25, no. 2, pp. 252-264,2015.

  24. Makinde, O.D. and Animasaun, I.L., Bioconvection in MHD Nanofluid Flow with Nonlinear Thermal Radiation and Quartic Autocatalysis Chemical Reaction past an Upper Surface of a Paraboloid of Revolution, Int. J. Therm. Sci., vol. 109, pp. 159-171,2016a.

  25. Makinde, O.D. and Animasaun, I.L., Thermophoresis and Brownian Motion Effects on MHD Bioconvection of Nanofluid with Nonlinear Thermal Radiation and Quartic Chemical Reaction past an Upper Horizontal Surface of a Paraboloid of Revolution, J Mol. Liq., vol. 221, pp. 733-743,2016b.

  26. Makinde, O.D. and Eegunjobi, A.S., MHD Couple Stress Nanofluid Flow in a Permeable Wall Channel with Entropy Generation and Nonlinear Radiative Heat, J. Therm. Sci. Technol., vol. 12, no. 2, p. JTST0033-JTST0033,2017.

  27. Makinde, O.D., Khan, W.A., and Aziz, A., On Inherent Irreversibility in Sakiadis Flow of Nanofluids, Int. J. Exergy, vol. 13, no. 2, pp. 159-174,2013.

  28. Mkwizu, M.H., Makinde, O.D., and Nkansah-Gyekye, Y., Numerical Investigation into Entropy Generation in a Transient Generalized Couette Flow of Nanofluids with Convective Cooling, Sadhana-Acad. Proc. Eng. Sci., vol. 40, no. 7, pp. 2073-2093, 2015.

  29. Mkwizu, M.H. and Makinde, O.D., Entropy Generation in a Variable Viscosity Channel Flow of Nanofluids with Convective Cooling, C. R. Mecanique, vol. 343, pp. 38-56,2015.

  30. Motsumi, T. and Makinde, O.D., Effects of Thermal Radiation and Viscous Dissipation on Boundary Layer Flow of Nanofluids over a Permeable Moving at Plate, Phys. Scr., vol. 86, no. 4, p. 045003,2012.

  31. Namburu, P.K., Kulkarni, D.P., Dandekar, A., and Das, D.K., Experimental Investigation of Viscosity and Specific Heat of Silicon Dioxide Nanofluids, Micro NanoLett., vol. 2, no. 3, pp. 67-71,2007.

  32. Oztop, H.F. and Abu-Nada, E., Numerical Study of Natural Convection in Partially Heated Rectangular Enclosures Filled with Nanofluids, Int. J. Heat Fluid Flow, vol. 29, no. 5, pp. 1326-1336,2008.

  33. Rosseland, S., Astrophysik audAtom-Theoretische Grundlagen, Berlin, Germany: Springer, pp. 41-44,1931.

  34. Saidur, R., Leong, K.Y., and Mohammad, H.A., A Review of Applications and Challenges of Nanofluids, Renewable Sustainable Energy Rev, vol. 15, pp. 1646-1668,2011.

  35. Tyagi, H., Radiative and Combustion Properties of Nanoparticle-Laden Liquids, PhD, Arizona State University, AZ, 2008.

  36. Woods, L.C., Thermodynamics of Fluid Systems, Oxford, UK: Oxford University Press, 1975.

  37. Yan, F., Wang, Z., Du, Y., Su, S., Zheng, Y., and Li, Q., Research on Rheological and Flow Behavior of Lubricating Grease in Extremely Cold Weather, Ind. Lubrication Tribol., vol. 69, no. 6, pp. 1066-1073,2017.

  38. Zeeshan, A., Hassan, M., Ellahi, R., and Nawaz, M., Shape Effect of Nanosize Particles in Unsteady Mixed Convection Flow of Nanofluid over Disk with Entropy Generation, Proc. Inst. Mech. Eng., PartE: J. Proc. Mech. Eng., vol. 231, no. 4, pp. 871-879, 2017.


Articles with similar content:

MAGNETOHYDRODYNAMIC PERISTALTIC FLOW OF NANOFLUIDS IN A VERTICAL ASYMMETRIC CHANNEL FILLED WITH POROUS MEDIUM IN PRESENCE OF THERMAL RADIATION
Special Topics & Reviews in Porous Media: An International Journal, Vol.6, 2015, issue 4
S. Das, B. C. Sarkar, Rabindra N. Jana
ENTROPY ANALYSIS ON TITANIUM MAGNETO-NANOPARTICLES SUSPENDED IN WATER-BASED NANOFLUID: A NUMERICAL STUDY
Computational Thermal Sciences: An International Journal, Vol.8, 2016, issue 5
Muhammad Mubashir Bhatti, Mohammad Mehdi Rashidi, Tehseen Abbas
EFFECT OF MULTIPLE SLIPS AND DISSIPATION ON BOUNDARY LAYER FLOW OF NANOFLUID FLOW OVER A POROUS FLAT PLATE IN POROUS MEDIA
Journal of Porous Media, Vol.18, 2015, issue 1
Waqar Khan, Ahmad I. Md. Ismail, Mohammed Jashim Uddin
ENTROPY ANALYSIS OF THERMALLY RADIATING MAGNETOHYDRODYNAMIC SLIP FLOW OF CASSON FLUID IN A MICROCHANNEL FILLED WITH SATURATED POROUS MEDIA
Journal of Porous Media, Vol.19, 2016, issue 9
Adetayo S. Eegunjobi, Oluwole Daniel Makinde
RADIATION EFFECT ON MHD FLOW OF A TANGENT HYPERBOLIC NANOFLUID OVER AN INCLINED EXPONENTIALLY STRETCHING SHEET
International Journal of Fluid Mechanics Research, Vol.46, 2019, issue 3
Nampelly Saidulu, A. Venakata Lakshmi, T. Gangaiah