Доступ предоставлен для: Guest
International Journal of Fluid Mechanics Research
Главный редактор: Atle Jensen (open in a new tab)
Заместитель главного редактора: Valery Oliynik (open in a new tab)
Редактор-основатель: Victor T. Grinchenko (open in a new tab)

Выходит 6 номеров в год

ISSN Печать: 2152-5102

ISSN Онлайн: 2152-5110

The Impact Factor measures the average number of citations received in a particular year by papers published in the journal during the two preceding years. 2017 Journal Citation Reports (Clarivate Analytics, 2018) IF: 1.1 To calculate the five year Impact Factor, citations are counted in 2017 to the previous five years and divided by the source items published in the previous five years. 2017 Journal Citation Reports (Clarivate Analytics, 2018) 5-Year IF: 1.3 The Eigenfactor score, developed by Jevin West and Carl Bergstrom at the University of Washington, is a rating of the total importance of a scientific journal. Journals are rated according to the number of incoming citations, with citations from highly ranked journals weighted to make a larger contribution to the eigenfactor than those from poorly ranked journals. Eigenfactor: 0.0002 The Journal Citation Indicator (JCI) is a single measurement of the field-normalized citation impact of journals in the Web of Science Core Collection across disciplines. The key words here are that the metric is normalized and cross-disciplinary. JCI: 0.33 SJR: 0.256 SNIP: 0.49 CiteScore™:: 2.4 H-Index: 23

Indexed in

INHERENT IRREVERSIBILITY IN CU-H2O NANOFLUID COUETTE FLOW WITH VARIABLE VISCOSITY AND NONLINEAR RADIATIVE HEAT TRANSFER

Том 46, Выпуск 6, 2019, pp. 525-543
DOI: 10.1615/InterJFluidMechRes.2019026403
Get accessGet access

Краткое описание

In this paper, the combined effects of thermal radiation, variable viscosity, nanoparticles shape, and volume fraction on the thermal performance and inherent irreversibility of a water-copper nanofluid Couette flows in a low aspect ratio microchannel have been investigated. The nonlinear governing equations are obtained and tackled numerically using shooting method with Runge-Kutta-Fehlberg integration scheme. The effects of various emerging thermophysical parameters on the nanofluid velocity and temperature profiles, skin friction, Nusselt number, thermal stability criteria with respect to critical Eckert number, entropy generation rate, and Bejan number are presented graphically and discussed. It is observed that both nanoparticles shapes and volume fraction have great influence on the nanofluids thermal stability and entropy generation rate. In addition, thermal radiation enhances the cooling and thermal stability of the nanofluid.

ЛИТЕРАТУРА
  1. Abolbashari, M.H., Freidoonimehr, N., Nazari, F., and Rashidi, M.M., Analytical Modeling of Entropy Generation for Casson Nanofluid Flow Induced by a Stretching Surface, Adv. Powder Technol., vol. 26, pp. 542-552,2015.

  2. Ali, A.O. and Makinde, O.D., Modelling the Effect of Variable Viscosity on Unsteady Couette flow of Nanofluids with Convective Cooling, J. Appl. FluidMech., vol. 8, no. 4, pp. 793-802,2015.

  3. Ali, A.O., Makinde, O.D., and Nkansah-Gyekye, Y., Numerical Study of Unsteady MHD Couette Flow and Heat Transfer of Nanofluids in a Rotating System with Convective Cooling, Int. J. Numer. Methods Heat Fluid Flow, vol. 26, no. 5, pp. 1567-1579,2016.

  4. Batcheor, G.K., An Introduction to Fluid Dynamics, Cambridge, UK: Cambridge University Press, 1967. Bejan, A., Entropy Generation Minimization, Boca Raton, FL: CRC Press, 1996.

  5. Bhatti, M.M., Sheikholeslami, M., and Zeeshan, A., Entropy Analysis on Electro-Kinetically Modulated Peristaltic Propulsion of Magnetized Nanofluid Flow through a Microchannel, Entropy, vol. 19, no. 9, p. 481,2017.

  6. Brinkman, H.C., The Viscosity of Concentrated Suspensions and Solutions, J. Chem. Phys, vol. 20, no. 4, p. 571,1952.

  7. Buongiorno, J., Convective Transport in Nanofluids, ASME J. Heat Transf, vol. 128, pp. 240-250,2006.

  8. Cebeci, T. and Bradshaw, P., Physical and Computational Aspects of Convective Heat Transfer, New York, NY: Springer, 1988.

  9. Choi, S.U.S., Enhancing Thermal Conductivity of Fluids with Nanoparticles, in Proc. 1995 ASME Int. Mech. Engng. Congress and Exposition, San Francisco, CA, vol. 66, pp. 99-105,1995.

  10. Das, S., Jana, R.N., and Makinde, O.D., MHD Flow of Cu-Al2O3/Water Hybrid Nanofluid in Porous Channel, Analysis of Entropy Generation, Defect Diffus. Forum, vol. 377, pp. 42-61,2017.

  11. Eegunjobi, A.S., Makinde, O.D., Tshehla, M.S., and Franks, O., Irreversibility Analysis of Unsteady Couette Flow with Variable Viscosity, J. Hydrodynam, vol. 27, no. 2, pp. 304-310,2015.

  12. Elias, M.M., Miqdad, M., Mahbubu,I.M., Saidur, R., Kamalisarvestani, M., Sohel, M.R., Hepbasli, A.,Rahim, N.A., and Amalina, M.A., Effect of Nanoparticle Shape on the Heat Transfer and Thermodynamic Performance of a Shell and Tube Heat Exchanger, Int. Commun. Heat Mass Transf., vol. 44, pp. 93-99,2013.

  13. Ellahi, R., Hassan, M., and Zeeshan, A., Shape Effects of Spherical and Nonspherical Nanoparticles in Mixed Convection Flow over a Vertical Stretching Permeable Sheet, Mech. Adv. Mater. Struct., vol. 24, no. 15, pp. 1231-1238,2017.

  14. Ellahi, R., Hassan, M., and Zeeshan, A., Shape Effects of Nanosize Particles in Cu-H2O Nanofluid on Entropy Generation, Int. J. Heat Mass Transf., vol. 81, pp. 449-456,2015.

  15. Hassan, M., Fetecau, C., Majeed, A., and Zeeshan, A., Effects of Iron Nanoparticles Shape on Convective Flow of Ferrofluid under Highly Oscillating Magnetic Field over Stretchable Rotating Disk, J Magn. Magn. Mater., vol. 465, pp. 531-539,2018.

  16. Johns, L.E. and Narayanan, R., Frictional Heating in Plane Couette Flow, Proc. R. Soc. A., vol. 453, pp. 1653-1670,1997.

  17. Keblinski, P., Phillpot, S.R., Choi, S.U.S., and Eastman, J.A., Mechanism of Heat Flow in Suspensions of Nano-Sized Particles (Nanofluids), Int. J. Heat Mass Transf., vol. 42, pp. 855-863,2002.

  18. Khalil, A.N.M, Ali, M.A.M., and Azmi, A.I., Effect of Al2O3 Nanolubricant with SDBS on Tool Wear during Turning Process of AISI 1050 with Minimal Quantity Lubricant, Proc. Manuf, vol. 2, pp. 130-134,2015.

  19. Leong, K.Y., Saidur, R., Kazi, S.N., and Mamun, A.H., Performance Investigation of an Automotive Car Radiator Operated with Nanofluid-Based Coolants (Nanofluid as a Coolant in a Radiator), Appl. Therm. Eng., vol. 30, nos. 17-18, pp. 2685-2692,2010.

  20. Makinde, O.D. and Onyejekwe, O., A Numerical Study of MHD Generalized Couette Flow and Heat Transfer with Variable Viscosity and Electrical Conductivity, J. Magn. Magn. Mater., vol. 323, no. 22, pp. 2757-2763,2011.

  21. Makinde, O.D., Effects of Viscous Dissipation and Newtonian Heating on Boundary Layer Flow of Nanofluids over a Flat Plate, Int. J. Numer. Methods Heat Fluid Flow, vol. 23, no. 8, pp. 1291-1303,2013.

  22. Makinde, O.D., Iskander, T., Mabood, F., Khan, W.A., and Tshehla, M.S., MHD Couette-Poiseuille Flow of Variable Viscosity Nanofluids in a Rotating Permeable Channel with Hall Effects, J. Mol. Liq., vol. 221, pp. 778-787,2016.

  23. Makinde, O.D., Thermal Decomposition of Unsteady Non-Newtonian MHD Couette Flow with Variable Properties, Int. J. Numer. Methods Heat Fluid Flow, vol. 25, no. 2, pp. 252-264,2015.

  24. Makinde, O.D. and Animasaun, I.L., Bioconvection in MHD Nanofluid Flow with Nonlinear Thermal Radiation and Quartic Autocatalysis Chemical Reaction past an Upper Surface of a Paraboloid of Revolution, Int. J. Therm. Sci., vol. 109, pp. 159-171,2016a.

  25. Makinde, O.D. and Animasaun, I.L., Thermophoresis and Brownian Motion Effects on MHD Bioconvection of Nanofluid with Nonlinear Thermal Radiation and Quartic Chemical Reaction past an Upper Horizontal Surface of a Paraboloid of Revolution, J Mol. Liq., vol. 221, pp. 733-743,2016b.

  26. Makinde, O.D. and Eegunjobi, A.S., MHD Couple Stress Nanofluid Flow in a Permeable Wall Channel with Entropy Generation and Nonlinear Radiative Heat, J. Therm. Sci. Technol., vol. 12, no. 2, p. JTST0033-JTST0033,2017.

  27. Makinde, O.D., Khan, W.A., and Aziz, A., On Inherent Irreversibility in Sakiadis Flow of Nanofluids, Int. J. Exergy, vol. 13, no. 2, pp. 159-174,2013.

  28. Mkwizu, M.H., Makinde, O.D., and Nkansah-Gyekye, Y., Numerical Investigation into Entropy Generation in a Transient Generalized Couette Flow of Nanofluids with Convective Cooling, Sadhana-Acad. Proc. Eng. Sci., vol. 40, no. 7, pp. 2073-2093, 2015.

  29. Mkwizu, M.H. and Makinde, O.D., Entropy Generation in a Variable Viscosity Channel Flow of Nanofluids with Convective Cooling, C. R. Mecanique, vol. 343, pp. 38-56,2015.

  30. Motsumi, T. and Makinde, O.D., Effects of Thermal Radiation and Viscous Dissipation on Boundary Layer Flow of Nanofluids over a Permeable Moving at Plate, Phys. Scr., vol. 86, no. 4, p. 045003,2012.

  31. Namburu, P.K., Kulkarni, D.P., Dandekar, A., and Das, D.K., Experimental Investigation of Viscosity and Specific Heat of Silicon Dioxide Nanofluids, Micro NanoLett., vol. 2, no. 3, pp. 67-71,2007.

  32. Oztop, H.F. and Abu-Nada, E., Numerical Study of Natural Convection in Partially Heated Rectangular Enclosures Filled with Nanofluids, Int. J. Heat Fluid Flow, vol. 29, no. 5, pp. 1326-1336,2008.

  33. Rosseland, S., Astrophysik audAtom-Theoretische Grundlagen, Berlin, Germany: Springer, pp. 41-44,1931.

  34. Saidur, R., Leong, K.Y., and Mohammad, H.A., A Review of Applications and Challenges of Nanofluids, Renewable Sustainable Energy Rev, vol. 15, pp. 1646-1668,2011.

  35. Tyagi, H., Radiative and Combustion Properties of Nanoparticle-Laden Liquids, PhD, Arizona State University, AZ, 2008.

  36. Woods, L.C., Thermodynamics of Fluid Systems, Oxford, UK: Oxford University Press, 1975.

  37. Yan, F., Wang, Z., Du, Y., Su, S., Zheng, Y., and Li, Q., Research on Rheological and Flow Behavior of Lubricating Grease in Extremely Cold Weather, Ind. Lubrication Tribol., vol. 69, no. 6, pp. 1066-1073,2017.

  38. Zeeshan, A., Hassan, M., Ellahi, R., and Nawaz, M., Shape Effect of Nanosize Particles in Unsteady Mixed Convection Flow of Nanofluid over Disk with Entropy Generation, Proc. Inst. Mech. Eng., PartE: J. Proc. Mech. Eng., vol. 231, no. 4, pp. 871-879, 2017.

ЦИТИРОВАНО В
  1. Shehzad S. A., Madhu Macha, Shashikumar N. S., Gireesha B. J., Mahanthesh B., Thermal and entropy generation of non-Newtonian magneto-Carreau fluid flow in microchannel, Journal of Thermal Analysis and Calorimetry, 143, 3, 2021. Crossref

  2. Almeida Felicita, Gireesha B.J., Venkatesh P., Ramesh G.K., Intrinsic irreversibility of Al2O3–H2O nanofluid Poiseuille flow with variable viscosity and convective cooling, International Journal of Numerical Methods for Heat & Fluid Flow, 31, 6, 2021. Crossref

  3. Venkatesh Puttaswmay, Gireesha Bijjanal Jayanna, Almeida Felicita, Investigation of irreversibilities in a microchannel by differing viscosity, including buoyancy forces and suction/injection, Heat Transfer, 50, 4, 2021. Crossref

  4. Dibaji Alireza, Bagherzadeh Seyed Amin, Karimipour Arash, Water–copper nanofluid flow in flat and ribbed microchannels: numerical modeling and optimization, International Journal of Numerical Methods for Heat & Fluid Flow, 31, 10, 2021. Crossref

  5. Nazeer Mubbashar, Numerical and perturbation solutions of cross flow of an Eyring-Powell fluid, SN Applied Sciences, 3, 2, 2021. Crossref

  6. Berrehal Hamza, Sowmya G., Makinde Oluwole Daniel, Shape effect of nanoparticles on MHD nanofluid flow over a stretching sheet in the presence of heat source/sink with entropy generation, International Journal of Numerical Methods for Heat & Fluid Flow, 32, 5, 2022. Crossref

Портал Begell Электронная Бибилиотека e-Книги Журналы Справочники и Сборники статей Коллекции Цены и условия подписки Begell House Контакты Language English 中文 Русский Português German French Spain