Доступ предоставлен для: Guest
Портал Begell Электронная Бибилиотека e-Книги Журналы Справочники и Сборники статей Коллекции
International Journal of Fluid Mechanics Research
ESCI SJR: 0.206 SNIP: 0.446 CiteScore™: 0.5

ISSN Печать: 2152-5102
ISSN Онлайн: 2152-5110

Выпуски:
Том 46, 2019 Том 45, 2018 Том 44, 2017 Том 43, 2016 Том 42, 2015 Том 41, 2014 Том 40, 2013 Том 39, 2012 Том 38, 2011 Том 37, 2010 Том 36, 2009 Том 35, 2008 Том 34, 2007 Том 33, 2006 Том 32, 2005 Том 31, 2004 Том 30, 2003 Том 29, 2002 Том 28, 2001 Том 27, 2000 Том 26, 1999 Том 25, 1998 Том 24, 1997 Том 23, 1996 Том 22, 1995

International Journal of Fluid Mechanics Research

DOI: 10.1615/InterJFluidMechRes.v39.i5.60
pages 448-465

Edge Effect in Cone and Plate Rheometer

Khaled M. Bataineh
Department of Mechanical Engineering, Jordan University of Science and Technology Irbid, Jordan

Краткое описание

This paper investigates theoretically and numerically the influence of the edge effect on rheological measurements in cone-plate rheometer. Theoretical discussion for the flow generated by the slow steady rotation of a cone in Newtonian fluid confined by stationary plate is presented. Due to the complicated shape of the boundary, analytical methods cannot be utilized, hence we propose a numerical procedure to solve the problem. The complex flow behavior between finite rotating cone and stationary plate is modeled using the computational Fluid Dynamic software package Fluent 6.3. Equations of motion for steady, axisymmetric, isothermal flow of incompressible Newtonian fluid coupled with continuity equation are solved numerically. The influence of edge effect on flow charac-teristics as a function of cone radius, gap angle, and angular speed is numerically studied. It is shown that the infinite cone and plate assumption is valid for a gap angle of less than 5°. It is also shown that the error in torque measurement due to edge effect is less that 5 % for a gap angle equals or less than 5° up to Reynolds number Re = ΩR2/v less than 860. Also, when Re is less than 86 for all gap angles studied, the maximum error in torque due to edge effect is less than 5 %. Also, it is shown that reducing the radius of the cone successfully allows the device to be used for high shear rates while maintain acceptable errors. A new definition of Reynolds number that includes gap angle is proposed. The values of the modified Reynolds number successfully characterize the flow regime. Finally, the presented numerical models have been verified against experimental results.


Articles with similar content:

Effect of Active Control by Blowing to Aerodynamic Drag of Bluff Body Van Model
International Journal of Fluid Mechanics Research, Vol.40, 2013, issue 4
Sabar P. Simanungkalit, Budiarso, Harinaldi, Rustan Tarakka
INFLUENCE OF THE YAW ANGLE ON HEAT TRANSFER AND PRESSURE DROP OF TUBE BUNDLE HEAT EXCHANGERS
International Heat Transfer Conference 7, Vol.15, 1982, issue
H. G. Groehn
COMPUTATIONAL INVESTIGATION OF BLADE SAILING PHENOMENON BY FLUID STRUCTURE INTERACTION APPROACH
Proceedings of the 24th National and 2nd International ISHMT-ASTFE Heat and Mass Transfer Conference (IHMTC-2017), Vol.0, 2017, issue
Asif Ali, Shrish Shukla, Sidh Nath Singh
NUMERICAL STUDY ON FLOW PERFORMANCE OF DELAYING AIRFOILSTALL WITH INTERNAL SLOTS
3rd Thermal and Fluids Engineering Conference (TFEC), Vol.35, 2018, issue
Tsung-chow Su, Pu Xing, Xukun Zhang
AN ADAPTIVE FINITE ELEMENT METHOD WITH DYNAMIC LES FOR TURBULENT REACTIVE FLOWS
Computational Thermal Sciences: An International Journal, Vol.8, 2016, issue 1
David Carrington, Jiajia Waters, Darrell W. Pepper