Доступ предоставлен для: Guest
Портал Begell Электронная Бибилиотека e-Книги Журналы Справочники и Сборники статей Коллекции
International Journal of Fluid Mechanics Research
ESCI SJR: 0.206 SNIP: 0.446 CiteScore™: 0.5

ISSN Печать: 2152-5102
ISSN Онлайн: 2152-5110

Выпуски:
Том 47, 2020 Том 46, 2019 Том 45, 2018 Том 44, 2017 Том 43, 2016 Том 42, 2015 Том 41, 2014 Том 40, 2013 Том 39, 2012 Том 38, 2011 Том 37, 2010 Том 36, 2009 Том 35, 2008 Том 34, 2007 Том 33, 2006 Том 32, 2005 Том 31, 2004 Том 30, 2003 Том 29, 2002 Том 28, 2001 Том 27, 2000 Том 26, 1999 Том 25, 1998 Том 24, 1997 Том 23, 1996 Том 22, 1995

International Journal of Fluid Mechanics Research

DOI: 10.1615/InterJFluidMechRes.v32.i2.30
pages 157-183

Aerodynamics of a Cambered Airfoil in Ground Effect

M. Rafiuddin Ahmed
School of Engineering and Physics, Faculty of Science and Technology, The University of the South Pacific, Suva, Fiji

Краткое описание

The flow characteristics over a NACA 4415 airfoil are studied experimentally at a Reynolds number of 2.4 · 105 by varying the angle of attack from 0 to 10° and ground clearance of the trailing edge from five percent of chord to eighty percent. The pressure distribution on the airfoil surface was obtained, velocity survey over the surface was performed, wake region was explored and lift and drag forces were measured. A strong suction effect was observed on the lower surface for angles of attack of 0 and 2.5° at small ground clearances. For the angle of attack of 0°, a separation bubble formed on the lower surface for the smallest ground clearance while for 2.5°, laminar separation occurred from the lower surface well ahead of the trailing edge. Increased suction was observed on the upper surface for small ground clearances. For the angle of attack of 10°, the flow on the upper surface could not withstand the adverse pressure gradient at small ground clearances and separated from the surface resulting in a loss of lift and an increase in drag.