Доступ предоставлен для: Guest
Портал Begell Электронная Бибилиотека e-Книги Журналы Справочники и Сборники статей Коллекции
International Journal of Fluid Mechanics Research
ESCI SJR: 0.206 SNIP: 0.446 CiteScore™: 0.5

ISSN Печать: 2152-5102
ISSN Онлайн: 2152-5110

Выпуски:
Том 46, 2019 Том 45, 2018 Том 44, 2017 Том 43, 2016 Том 42, 2015 Том 41, 2014 Том 40, 2013 Том 39, 2012 Том 38, 2011 Том 37, 2010 Том 36, 2009 Том 35, 2008 Том 34, 2007 Том 33, 2006 Том 32, 2005 Том 31, 2004 Том 30, 2003 Том 29, 2002 Том 28, 2001 Том 27, 2000 Том 26, 1999 Том 25, 1998 Том 24, 1997 Том 23, 1996 Том 22, 1995

International Journal of Fluid Mechanics Research

DOI: 10.1615/InterJFluidMechRes.v24.i4-6.10
pages 450-460

An Experimental Study on Droplet Interactions

G. Lavergne
Heterogeneous, Multiphase Flows Unit, Aerodynamic and Energetic Models Department, Office National d'Etudes et de la Recherche Aérospatiales (ONERA), 31055 Toulouse Cedex 4, France
O. Adam
ONERA/CERT/DERMES, Toulouse, France
J. F. Virepinte
ONERA/CERT/DERMES, Toulouse, France
Y. Biscos
ONERA/CERT/DERMES, Toulouse, France

Краткое описание

This paper describes a basic experiment on rectilinear mono sited droplets stream allowing the improvement of the understanding of the physical processes (droplet-droplet interaction, droplet evaporation, ...) occurring in dense sprays. The droplet stream is investigated at different locations downstream by optical measurements to get the droplet diameter, temperature and velocity with or without combustion. To study the droplet stream in low interaction an electrostatic droplet deflector has been developed to increase the droplet spacing. Ethanol was the simulation fluid used during these experiments. The droplet stream was investigated in cold conditions to study the influence of droplet spacing on the drag coefficient. The distance parameter is defined by the ratio of droplet spacing to droplet size. The results are compared to the correlations of Mulholland and Zhu. These correlations overestimate the drag coefficient for distance parameters lower than 20. We propose a new correlation to improve the prediction of the drag coefficient for a large range of spacing parameter 2 < C < 40. The droplet stream was ignited as it passes through an electrically heated coil. The experimental results are compared to the classical D2 law, which overestimates the droplet evaporation in strong interaction. The preliminary results concern a burning droplet stream with an initial droplet diameter Dg0 = 124 μm and velocity Vg0 = 8.3 ms−1 and C0 = 2. For a distance parameter C = 12, the results do not match the D2 law showing the usefulness of the droplet deflector.


Articles with similar content:

Entrained Water Atomization Experiments and its Size Measurements Using Optical Measurement Techniques
International Journal of Fluid Mechanics Research, Vol.24, 1997, issue 4-6
Colin J. Bates, M. R. Ayob
Mass Transfer from Evaporating 1-Hexanol Drop by Using Two Experimental Technique
International Journal of Fluid Mechanics Research, Vol.24, 1997, issue 4-6
J. Smolik, J. Schwarz
EVAPORATION RATES OF AGRICULTURAL SPRAY MATERIAL AT LOW RELATIVE WIND SPEEDS
Atomization and Sprays, Vol.8, 1998, issue 4
Milton E. Teske, Christopher M. Riley, Clarence G. Hermansky
EXPERIMENTAL INVESTIGATION OF THE 700 MWe CONTAINMENT SPRAY SYSTEM SPRAY NOZZLES/SYSTEM
Atomization and Sprays, Vol.27, 2017, issue 8
Manish Jain, Kannan Iyer, S. F. Vhora, S. V. Prabhu, T. K. Kandar
EXPERIMENTAL STUDY OF EVAPORATING DROPLETS SUSPENDED ETHANOL-WATER SOLUTION UNDER CONDITIONS OF FORCED CONVECTION
Interfacial Phenomena and Heat Transfer, Vol.6, 2018, issue 2
Viktor I. Terekhov, Vladimir V. Terekhov, Nikolay B. Miskiv, Elena M. Bochkareva, Alexander D. Nazarov