Доступ предоставлен для: Guest
Портал Begell Электронная Бибилиотека e-Книги Журналы Справочники и Сборники статей Коллекции
International Journal of Fluid Mechanics Research
ESCI SJR: 0.22 SNIP: 0.446 CiteScore™: 0.5

ISSN Печать: 2152-5102
ISSN Онлайн: 2152-5110

Выпуски:
Том 46, 2019 Том 45, 2018 Том 44, 2017 Том 43, 2016 Том 42, 2015 Том 41, 2014 Том 40, 2013 Том 39, 2012 Том 38, 2011 Том 37, 2010 Том 36, 2009 Том 35, 2008 Том 34, 2007 Том 33, 2006 Том 32, 2005 Том 31, 2004 Том 30, 2003 Том 29, 2002 Том 28, 2001 Том 27, 2000 Том 26, 1999 Том 25, 1998 Том 24, 1997 Том 23, 1996 Том 22, 1995

International Journal of Fluid Mechanics Research

DOI: 10.1615/InterJFluidMechRes.v39.i1.10
pages 1-19

A Level-Set-Based Method for Numerical Simulation of Primary Breakup of Cylindrical Liquid Jets

Ashraf Balabel
Faculty of Engineering, Mechanical Power Engineering Dept., Minoufiya University Shebin Elkom-Egypt

Краткое описание

On the basis of the level set method, a new numerical method for predicting the evolution and the primary capillary breakup of a cylindrical liquid jet is presented. In such context, the only driving forces existed are considered to be the surface tension and the viscous forces, where the aerodynamic force is neglected. The evolution of the liquid jet and the subsequently dynamics including breakup are predicted by solving the Navier−Stokes equations using the control volume approach on a non-staggered grid system. The solution of the governing equations is performed only on the liquid phase, where specified boundary conditions for velocity components and pressure are defined on the moving interface. The topological changes of the moving interface is described via the level set method, which simultaneously, provides an accurate and robust modeling of the interfacial stresses which drive the internal flow. The numerical method is validated towards the analytical solution of the linear and nonlinear theories developed for predicting the evolution of the axisymmetric liquid jet under different conditions. The obtained results demonstrated the effects of the disturbance wave number, the disturbance amplitude, and the dynamics viscosity on the evolution and breakup of liquid jets. The formation of the satellite and sub-satellite droplets is also predicted which has been recognized as a highly nonlinear phenomenon in jet breakup process. The breakup process in the viscous regime is shown to be a self-repeating mechanism, which leads to the formation of sub-satellite droplets. The agreement with the analytical as well as the previous experimental measurements in inviscid and viscous regimes reveals the capability of the developed numerical method in predicting the liquids jet dynamics in different flow regimes.


Articles with similar content:

CHARACTERIZATION OF TRAJECTORY, BREAK POINT, AND BREAK POINT DYNAMICS OF A PLAIN LIQUID JET IN A CROSSFLOW
Atomization and Sprays, Vol.21, 2011, issue 3
U. M. Mondragon, Q. Wang, C. T. Brown, Vincent McDonell
DIRECT NUMERICAL AND LARGE-EDDY SIMULATION OF PRIMARY ATOMIZATION IN COMPLEX GEOMETRIES
Atomization and Sprays, Vol.23, 2013, issue 11
Peter Brady, Mark Owkes, Olivier Desjardins, Jeremy McCaslin
PROPERTIES OF NONTURBULENT ROUND LIQUID JETS IN UNIFORM GASEOUS CROSS FLOWS
Atomization and Sprays, Vol.15, 2005, issue 3
C. Aalburg, B. van Leer, G. M. Faeth, Khaled A. Sallam
VALIDATION OF THE VSB2 SPRAY MODEL AGAINST SPRAY A AND SPRAY H
Atomization and Sprays, Vol.26, 2016, issue 8
Anne Kosters, A. Karlsson
THE FORMATION OF DROPS FROM VISCOELASTIC LIQUID JETS AND SHEETS−AN OVERVIEW
Atomization and Sprays, Vol.27, 2017, issue 4
Günter Brenn, Gregor Plohl