Доступ предоставлен для: Guest
International Journal of Medicinal Mushrooms
Главный редактор: Solomon P. Wasser (open in a new tab)

Выходит 12 номеров в год

ISSN Печать: 1521-9437

ISSN Онлайн: 1940-4344

The Impact Factor measures the average number of citations received in a particular year by papers published in the journal during the two preceding years. 2017 Journal Citation Reports (Clarivate Analytics, 2018) IF: 1.2 To calculate the five year Impact Factor, citations are counted in 2017 to the previous five years and divided by the source items published in the previous five years. 2017 Journal Citation Reports (Clarivate Analytics, 2018) 5-Year IF: 1.4 The Immediacy Index is the average number of times an article is cited in the year it is published. The journal Immediacy Index indicates how quickly articles in a journal are cited. Immediacy Index: 0.3 The Eigenfactor score, developed by Jevin West and Carl Bergstrom at the University of Washington, is a rating of the total importance of a scientific journal. Journals are rated according to the number of incoming citations, with citations from highly ranked journals weighted to make a larger contribution to the eigenfactor than those from poorly ranked journals. Eigenfactor: 0.00066 The Journal Citation Indicator (JCI) is a single measurement of the field-normalized citation impact of journals in the Web of Science Core Collection across disciplines. The key words here are that the metric is normalized and cross-disciplinary. JCI: 0.34 SJR: 0.274 SNIP: 0.41 CiteScore™:: 2.8 H-Index: 37

Indexed in

Antibacterial Activity of Fruiting Body Extracts from Culinary-Medicinal Winter Mushroom, Flammulina velutipes (Agaricomycetes) against Oral Pathogen Streptococcus mutans

Том 22, Выпуск 2, 2020, pp. 115-124
DOI: 10.1615/IntJMedMushrooms.2020033335
Get accessGet access

Краткое описание

The edible medicinal mushroom Flammulina velutipes (enokitake) has many applications as food and medicine, but its application in dentistry is unknown. This study aims to investigate the inhibitory effect of fruiting body extracts from F. velutipes on the growth and adhesion of Streptococcus mutans, the main cause of human caries, in vitro. Of the four extracts (named TG01 from water, TG02 from 95% ethanol, TG03 from 50% ethanol, and TG04 from ethyl acetate), TG03 had significant antibacterial activity (MIC = 10 mg/mL; MBC = 20 mg/mL). Planktonic growth and biofilm formation in S. mutans was repressed by TG03 at 5 mg/mL and above. Meanwhile, cytotoxicity analysis showed that TG03 was not toxic to human oral keratinocyte cells. HPLC-QQQ-MS analysis showed that the TG03 extract contained a large amount of arabitol, a sucrose substitute that reduces the development of caries. Thus, F. velutipes extracts can effectively inhibit the growth of the oral pathogen S. mutans without cytotoxicity against human oral keratinocytes. Therefore, F. velutipes is a good candidate for the development of oral hygiene agents to control dental caries.

ЛИТЕРАТУРА
  1. Selwitz RH, Ismail AI, Pitts NB. Dental Caries. Lancet. 2007;369(9555):51-59.

  2. Russell RR. How has genomics altered our view of caries microbiology? Caries Res. 2008;42(5):319-327.

  3. Bowen WH, Koo H. Biology of Streptococcus mutans-derived glucosyltransferases: role in extracellular matrix formation of cariogenic biofilms. Caries Res. 2011;45(1):69-86.

  4. Hong SW, Baik JE, Kang SS, Yun CH, Seo DG, Han SH. Lipoteichoic acid of Streptococcus mutans interacts with tolllike receptor 2 through the lipid moiety for induction of inflammatory mediators in murine macrophages. Mol Immunol. 2014;57(2):284-91.

  5. Loman AA, Ju LK. Inhibitory effects of arabitol on caries-associated microbiologic parameters of oral Streptococci and Lactobacilli. Arch Oral Biol. 2015;60(12):1721-28.

  6. Chaffee BW, Cheng J, Featherstone JD. Non-operative anticaries agents and dental caries increment among adults at high caries risk: a retrospective cohort study. BMC Oral Health. 2015;15(1):111.

  7. Wang C, Liu J, Su D. Preliminary screen of high cariogenicity Streptococcus mutans strains isolated from clinical specimens [in Chinese]. West China J Stomatol. 2013;31(2):136-40.

  8. Marsh PD. Are dental diseases examples of ecological catastrophes? Microbiology. 2003;149(Pt 2):279-94.

  9. Huang R, Li M, Gregory RL. Effect of nicotine on growth and metabolism of Streptococcus mutans. Eur J Oral Sci. 2012;120(4):319-25.

  10. Hall-Stoodley L, Costerton JW, Stoodley P. Bacterial biofilms: from the natural environment to infectious diseases. Nat Rev Microbiol. 2004;2(2):95-108.

  11. Marsh PD, Moter A, Devine DA. Dental plaque biofilms: communities, conflict and control. Periodontal 2000. 2011;55(1):16-35.

  12. Stewart PS. Biophysics of biofilm infection. Pathog Dis. 2014;70(3):212-18.

  13. Wasser SP. Medicinal mushrooms in human clinical studies. Part I. Anticancer, oncoimmunological, and immunomodulatory activities: a review. Int J Med Mushrooms. 2017;19:279-317.

  14. Wasser SP. Medicinal mushroom science: history, current status, future trends, and unsolved problems. Int J Med Mushrooms. 2010;12(1):1-16.

  15. Chang ST, Wasser SP. Current and future research trends in agricultural and biomedical applications of medicinal mushrooms and mushroom products (review). Int J Med Mushrooms. 2018;20(11):1034-48.

  16. Lingstrom P, Zaura E, Hassan H, Buijs MJ, Hedelin P, Pratten J, Spratt D, Daglia M, Karbowiak A, Signoretto C, Rosema M, van der Weijden F, Wilson M. The anticaries effect of a food extract (shiitake) in a short-term clinical study. J Biomed Biotechnol. 2012;2012:217164.

  17. Papetti A, Signoretto C, Spratt DA, Pratten J, Lingstrom P, Zaura E, Ofek I, Wilson M, Pruzzo C, Gazzani G. Components in Lentinus edodes mushroom with antibiofilm activity directed against bacteria involved in caries and gingivitis. Food Funct. 2018;9(6):3489-99.

  18. Signoretto C, Marchi A, Bertoncelli A, Burlacchini G, Papetti A, Pruzzo C, Zaura E, Lingstrom P, Ofek I, Pratten J, Spratt DA, Wilson M, Canepari P. The anti-adhesive mode of action of a purified mushroom (Lentinus edodes) extract with anticaries and antigingivitis properties in two oral bacterial phatogens. BMC Complement Altern M. 2014;14:75.

  19. Avinash J, Vinay S, Jha K, Das D, Goutham BS, Kumar G. The unexplored anticaries potential of shiitake mushroom. Pharmacogn Rev. 2016;10(20):100-4.

  20. Jia W, Feng J, Zhang JS, Lin CC, Wang WH, Chen HG. Structural characteristics of the novel polysaccharide FVPA1 from winter culinary-medicinal mushroom, Flammulina velutipes (Agaricomycetes), capable of enhancing natural killer cell activity against K562 Tumor Cells. Int J Med Mushrooms. 2017;19(6):535-46.

  21. Tsai SY, Huang EW, Lin CP. Compositional differences of the winter culinary-medicinal mushroom, Flammulina velutipes (Agaricomycetes), under three types of light conditions. Int J Med Mushrooms. 2017;19(3):267-76.

  22. Dong YR, Cheng SJ, Qi GH, Yang ZP, Yin SY, Chen GT. Antimicrobial and antioxidant activities of Flammulina velutipes polysaccharides and polysaccharide-iron(III) complex [corrected]. Carbohydr Polym. 2017;161:26-32.

  23. Su A, Yang W, Zhao L, Zhao L, Pei F, Yuan B, Zhong L, Ma G, Hu Q. Flammulina velutipes polysaccharides improve scopolamine-induced learning and memory impairment in mice by modulating gut microbiota composition. Food Funct. 2018;9(3):1424-32.

  24. Lien HM, Tseng CJ, Huang CL, Lin YT, Chen CC, Lai YY. Antimicrobial activity of Antrodia camphorata extracts against oral bacteria. PLoS One. 2014;9(8):e105286.

  25. Huang R, Li M, Ye M, Yang K, Xu X, Gregory RL. Effects of nicotine on Streptococcus gordonii growth, biofilm formation, and cell aggregation. Appl Environ Microbiol. 2014;80(23):7212-18.

  26. Kordowska-Wiater M, Kuzdralinski A, Czernecki T, Targonski Z, Frac M, Oszust K. The ability of a novel strain Scheffer-somyces (syn. Candida) shehatae isolated from rotten wood to produce arabitol. Pol J Microb. 2017;66(3):335-43.

  27. Loman AA, Ju LK. Inhibitory effects of arabitol on caries-associated microbiologic parameters of oral Streptococci and Lactobacilli. Arch Oral Biol. 2015;60(12):1721-28.

  28. Kitamoto Y, Gruen HE. Distribution of cellular carbohydrates during development of the mycelium and fruitbodies of Flammulina velutipes. Plant Physiol. 1976;58(4):485-91.

  29. Tereshina VM, Memorskaia AS. Adaptation of Flammulina velutipes to hypothermia in natural environment: the role of lipids and carbohydrates [in Russian]. Mikrobiologiia. 2005;74(3):329-34.

  30. Valm AM, Mark Welch JL, Rieken CW, Hasegawa Y, Sogin ML, Oldenbourg R, Dewhirst FE, Borisy GG. Systems-level analysis of microbial community organization through combinatorial labeling and spectral imaging. Proc Natl Acad Sci U S A. 2011;108(10):4152-57.

  31. Firestone AR, Schmid R, Muhlemann HR. Cariogenic effects of cooked wheat starch alone or with sucrose and frequency-controlled feedings in rats. Arch Oral Biol. 1982;27(9):759-63.

  32. Ribeiro CC, Tabchoury CP, Del Bel Cury AA, Tenuta LM, Rosalen PL, Cury JA. Effect of starch on the cariogenic potential of sucrose. Br J Nutr. 2005;94(1):44-50.

  33. Paes Leme AF, Koo H, Bellato CM, Bedi G, Cury JA. The role of sucrose in cariogenic dental biofilm formation-new insight. J Dent Res. 2006;85(10):878-87.

ЦИТИРОВАНО В
  1. Huang Yi-Zhen, Jin Zheng, Wang Zhe-Ming, Qi Li-Bo, Song Shuang, Zhu Bei-Wei, Dong Xiu-Ping, Marine Bioactive Compounds as Nutraceutical and Functional Food Ingredients for Potential Oral Health, Frontiers in Nutrition, 8, 2021. Crossref

Портал Begell Электронная Бибилиотека e-Книги Журналы Справочники и Сборники статей Коллекции Цены и условия подписки Begell House Контакты Language English 中文 Русский Português German French Spain