Доступ предоставлен для: Guest
Портал Begell Электронная Бибилиотека e-Книги Журналы Справочники и Сборники статей Коллекции
International Journal of Medicinal Mushrooms
Импакт фактор: 1.423 5-летний Импакт фактор: 1.525 SJR: 0.431 SNIP: 0.661 CiteScore™: 1.38

ISSN Печать: 1521-9437
ISSN Онлайн: 1940-4344

Выпуски:
Том 21, 2019 Том 20, 2018 Том 19, 2017 Том 18, 2016 Том 17, 2015 Том 16, 2014 Том 15, 2013 Том 14, 2012 Том 13, 2011 Том 12, 2010 Том 11, 2009 Том 10, 2008 Том 9, 2007 Том 8, 2006 Том 7, 2005 Том 6, 2004 Том 5, 2003 Том 4, 2002 Том 3, 2001 Том 2, 2000 Том 1, 1999

International Journal of Medicinal Mushrooms

DOI: 10.1615/IntJMedMushr.v4.i3.90
7 pages

Use of Edible and Medicinal Oyster Mushroom [Pleurotus ostreatus (Jacq.: Fr.) Kumm.] Spent Compost in Remediation of Chemically Polluted Soils

Trine Eggen
Center of Soil and Environmental Research, Fredrik A. Dahls vei 20, N-1432 s, Norway
Vaclav Sasek
Institute of Microbiology, Academy of Sciences of the Czech Republic, Videnska 1083, CZ-14220 Prague 4, Czech Republic; Vysocanska 548, 190 00 Prague 9, Czech Republic

Краткое описание

Spent mushroom substrate represents an environmental problem owing to its bulk volume as a waste material. Reclamation of contaminated soils is one potential use of spent mushroom substrate. The present study describes the capacity of spent substrate from commercial oyster mushroom (Pleurotus ostreatus) production to remove polycyclic aromatic hydrocarbons from weathered creosote in a highly contaminated (PAH sum 6473 mg/kg) soil of a former abandoned wood preservation site. Addition of the spent fungal compost resulted in a reduction of 3-ring compounds, from 50% (acenaphthene, anthracene) to 87% (phenanthrene, fluorene) after a 12-week treatment period. The reduction increased to 87% (anthracene) and 97−99% (fluorene, phenanthrene, acenaphthene) after additional reinoculation with spent fungal substrate and another 3-week incubation period. The effect on 4-ring compounds was much less pronounced, and reduction was measured only for fluoranthene and pyrene, with 43% and 34% decrease, respectively, after 12 weeks of the fungal treatment. Again, reinoculation had a positive effect and increased reduction to 59% and 51%, respectively. These results demonstrate the PAH-removal capacity of spent oyster mushroom substrate in highly contaminated soil.


Articles with similar content:

Bioactive Anthocyanins Detected in Human Urine after Ingestion of Blackcurrant Juice
Journal of Environmental Pathology, Toxicology and Oncology, Vol.20, 2001, issue 2
Irmgard Bitsch, Michael Netzel, Gabriele Strass, Marlies Janssen, Roland Bitsch
Antioxidant Potential of Lingzhi or Reishi Medicinal Mushroom, Ganoderma lucidum (Higher Basidiomycetes) Cultivated on Artocarpus heterophyllus Sawdust Substrate in India
International Journal of Medicinal Mushrooms, Vol.17, 2015, issue 12
Uma Maheshwari, Merlin Rajesh Lal, P. Rani, Sreeram Krishnan
Effects of the Alkaloid Complex of Nuphar lutea (L.) Smith on the Survival of Carp Underyearlings
Hydrobiological Journal, Vol.42, 2006, issue 6
V. F. Kovalenko, O. V. Balanda
Antioxidant and Cholesterol Esterase Inhibitory Properties of Supplementation with Coconut Water in Submerged Cultivation of the Medicinal Chinese Caterpillar Mushroom, Ophiocordyceps sinensis CS1197 (Ascomycetes)
International Journal of Medicinal Mushrooms, Vol.19, 2017, issue 4
B. Manohar, S. Sravan Kumar, G. M. Shashidhar, P. Giridhar
A Survey of Southeast North American Wild Growing Macromycetes (Higher Basidiomycetes and Ascomycetes) Sporophores for Biological Activity
International Journal of Medicinal Mushrooms, Vol.5, 2003, issue 2
Samir A. Ross, Christine J. G. Duncan, William Cibula