Доступ предоставлен для: Guest
Critical Reviews™ in Eukaryotic Gene Expression

Выходит 6 номеров в год

ISSN Печать: 1045-4403

ISSN Онлайн: 2162-6502

The Impact Factor measures the average number of citations received in a particular year by papers published in the journal during the two preceding years. 2017 Journal Citation Reports (Clarivate Analytics, 2018) IF: 1.6 To calculate the five year Impact Factor, citations are counted in 2017 to the previous five years and divided by the source items published in the previous five years. 2017 Journal Citation Reports (Clarivate Analytics, 2018) 5-Year IF: 2.2 The Immediacy Index is the average number of times an article is cited in the year it is published. The journal Immediacy Index indicates how quickly articles in a journal are cited. Immediacy Index: 0.3 The Eigenfactor score, developed by Jevin West and Carl Bergstrom at the University of Washington, is a rating of the total importance of a scientific journal. Journals are rated according to the number of incoming citations, with citations from highly ranked journals weighted to make a larger contribution to the eigenfactor than those from poorly ranked journals. Eigenfactor: 0.00058 The Journal Citation Indicator (JCI) is a single measurement of the field-normalized citation impact of journals in the Web of Science Core Collection across disciplines. The key words here are that the metric is normalized and cross-disciplinary. JCI: 0.33 SJR: 0.345 SNIP: 0.46 CiteScore™:: 2.5 H-Index: 67

Indexed in

Therapeutic Genome Editing by CRISPR/Cas9-Mediated Strategy to Cure Genetic Disorders in Humans: Guide for Molecular Surgeons 

Том 29, Выпуск 5, 2019, pp. 387-399
DOI: 10.1615/CritRevEukaryotGeneExpr.2019025930
Get accessGet access

Краткое описание

Genetic engineering scientists have shown a wide increase especially on therapeutic promise which has gained considerable awareness. This goes back to a variety of tools including the clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated 9 (Cas9) system. This technique has shown an efficient flourish in genome editing and treatment of genetic diseases. Due to its specificity and ease of use it has been widely adopted for a variety of applications involving human diseases, treatment, therapeutics in cancer and biotechnology. Albeit studies have shown that CRISPR/Cas9 technique is more proficient, particular and manipulable than past eras of genetic modulation instruments. Additionally, it can be further enhanced by the application of different developments raising its general productivity in a higher recurrence of genome modifications and decreasing its off-target impacts. Here in this review this technique will be introduced with discussing its relation with the genome engineering and gene editing especially in the therapeutic area. Furthermore, the specificity of the application is explained and the contribution of Induced Human Pluripotent Stem Cells (iPSCs) in gene manipulation and how CRISPR technology expanded its application is discussed. Lastly, we describe the novel effective applications of the CRISPR/Cas9 technology and propose some enhancements that might improve the technique with highlighting the future approach and remarks.

ЛИТЕРАТУРА
  1. Jo Y, Suresh B, Kim H, Ramakrishna S. CRISPR/Cas9 system as an innovative genetic engineering tool: enhancements in sequence specificity and delivery methods. Biochim Biophys Acta. 2015;1856(2):234-43.

  2. Xiong X, Chen M, Lim W, Zhao D, Qi L. CRISPR/Cas9 for human genome engineering and disease research. Ann Rev Genom Human Gen. 2016;17(1):131-54.

  3. Urnov F, Miller J, Lee Y, Beausejour C, Rock J, Augustus S, Jamieson AC, Porteus MH, Gregory PD, Holmes MC. Highly efficient endogenous human gene correction using designed zinc-finger nucleases. Nature. 2005;435(7042):646-51.

  4. Bedell V, Wang Y, Campbell J, Poshusta T, Starker C, Krug RG II, Tan W, Penheiter SG, Ma AC, Leung AY, Fahrenkrug SC, Carlson DF, Voytas DF, Clark KJ, Essner JJ, Ekker SC. In vivo genome editing using a high-efficiency TALEN system. Nature. 2012;491(7422):114-8.

  5. Mei Y, Wang Y, Chen H, Sun Z, Ju X. Recent progress in CRISPR/Cas9 technology. J Genet Genom. 2016;43(2): 63-75.

  6. Cong L, Ran F, Cox D, Lin S, Barretto R, Habib N, Hsu PD, Wu X, Jiang W, Marraffini LA, Zhang F. Multiplex genome engineering using CRISPR/Cas systems. Science. 2013;339(6121):819-23.

  7. Chang N, Sun C, Gao L, Zhu D, Xu X, Zhu X, Xiong JW, Xi JJ. Genome editing with RNA-guided Cas9 nuclease in Zebrafish embryos. Cell Res. 2013;23(4):465-72.

  8. Hwang W, Fu Y, Reyon D, Maeder M, Kami P, Sander J, Joung JK, Peterson RT, Yeh JR. Heritable and precise zebrafish genome editing using a CRISPR-Cas system. PLoS One. 2013;8(7):e68708.

  9. Jao L, Wente S, Chen W. Efficient multiplex biallelic zebrafish genome editing using a CRISPR nuclease system. Proc Natl Acad Sci USA. 2013;110(34):13904-9.

  10. Ma S, Chang J, Wang X, Liu Y, Zhang J, Lu W, Gao J, Shi R, Zhao P, Xia Q. CRISPR/Cas9 mediated multiplex genome editing and heritable mutagenesis of BmKu70 in Bombyx mori. Sci Rep. 2014;4:4489.

  11. Bassett A, Tibbit C, Ponting C, Liu J. Highly efficient targeted mutagenesis of drosophila with the CRISPR/Cas9 system. Cell Rep. 2013;4(1):220-8.

  12. Bassett A, Kong L, Liu J. A genome-wide CRISPR library for high-throughput genetic screening in drosophila cells. J Gen Genom. 2015;42(6):301-9.

  13. Mali P, Yang L, Esvelt K, Aach J, Guell M, DiCarlo J, Norville JE, Church GM. RNA-guided human genome engineering via Cas9. Science. 2013;339(6121):823-6.

  14. Gaj T, Gersbach C, Barbas C. ZFN, TALEN, and CRISPR/ Cas-based methods for genome engineering. Trends Biotechnol. 2013;31(7):397-405.

  15. Carroll D. Genome engineering with zinc-finger nucleases. Genetics. 2011;188(4):773-82.

  16. Wyman C, Kanaar R. DNA double-strand break repair: all's well that ends well. Annual Rev Gen. 2006;40(1):363-83.

  17. Song G, Jia M, Chen K, Kong X, Khattak B, Xie C, Li A, Mao L. CRISPR/Cas9: a powerful tool for crop genome editing. Crop J. 2016;4(2):75-82.

  18. Perez E, Wang J, Miller J, Jouvenot Y, Kim K, Liu O, Wang N, Lee G, Bartsevich VV, Lee YL, Guschin DY, Rupniewski I, Waite AJ, Carpenito C, Carroll RG, Orange JS, Urnov FD, Rebar EJ, Ando D, Gregory PD, Riley JL, Holmes MC, June CH. Establishment of HIV-1 resistance in CD4+ T cells by genome editing using zinc-finger nucleases. Nature Biotechnol. 2008;26(7):808-16.

  19. Barrangou R, Fremaux C, Deveau H, Richards M, Boyaval P, Moineau S Romero DA, Horvath P. CRISPR provides acquired resistance against viruses in prokaryotes. Science. 2007;315(5819):1709-12.

  20. Marraffini L, Sontheimer E. CRISPR interference: RNA-directed adaptive immunity in bacteria and archaea. Nature Rev Gen. 2010;11(3):181-90.

  21. Jinek M, Chylinski K, Fonfara I, Hauer M, Doudna J, Charpentier E. A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity. Science. 2012;337(6096):816-21.

  22. Deltcheva E, Chylinski K, Sharma C, Gonzales K, Chao Y, Pirzada Z, Eckert MR, Vogel J, Charpentier E. CRISPR RNA maturation by trans-encoded small RNA and host factor RNase III. Nature. 2011;471(7340):602-7.

  23. Hsu P, Lander E, Zhang F. Development and applications of CRISPR-Cas9 for genome engineering. Cell. 2014;157(6):1262-78.

  24. Ishino Y, Shinagawa H, Makino K, Amemura M, Nakata A. Nucleotide sequence of the iap gene, responsible for alkaline phosphatase isozyme conversion in Escherichia coli, and identification of the gene product. J Bacteriol. 1987;169(12):5429-33.

  25. Mojica F, Montoliu L. On the origin of CRISPR-Cas technology: from prokaryotes to mammals. Trends Microbiol. 2016;24(10):811-20.

  26. Guan L, Han Y, Zhu S, Lin J. Application of CRISPR-Cas system in gene therapy: preclinical progress in animal model. DNA Repair. 2016;46:1-8.

  27. Makarova K, Aravind L, Wolf Y, Koonin E. Unification of Cas protein families and a simple scenario for the origin and evolution of CRISPR-Cas systems. Biology Direct. 2011;6(1):38.

  28. Gasiunas G, Barrangou R, Horvath P, Siksnys V. Cas9-crRNA ribonucleoprotein complex mediates specific DNA cleavage for adaptive immunity in bacteria. Proc Natl Acad Sci USA. 2012;109(39): E2579-86.

  29. Horvath P, Barrangou R. CRISPR/Cas, the immune system of bacteria and archaea. Science. 2010;327(5962):167-70.

  30. Cho S, Kim S, Kim J, Kim J. Targeted genome engineering in human cells with the Cas9 RNA-guided endonuclease. Nature Biotechnol. 2013;31(3):230-2.

  31. Hwang W, Fu Y, Reyon D, Maeder M, Tsai S, Sander JD, Peterson RT, Yeh JR, Joung JK. Efficient genome editing in zebrafish using a CRISPR-Cas system. Nature Biotechnol. 2013;31(3):227-9.

  32. Jiang W, Bikard D, Cox D, Zhang F, Marraffini L. RNA-guided editing of bacterial genomes using CRISPR-Cas systems. Nature Biotechnol. 2013;31(3):233-9.

  33. van der Oost J, Jore M, Westra E, Lundgren M, Brouns S. CRISPR-based adaptive and heritable immunity in prokaryotes. Trends Biochem Sci. 2009;34(8):401-7.

  34. Makarova K, Haft D, Barrangou R, Brouns S, Charpentier E, Horvath P, Moineau S, Mojica FJ, Wolf YI, Yakunin AF, van der Oost J, Koonin EV. Evolution and classification of the CRISPR-Cas systems. Nature Rev Microbiol. 2011;9(6):467-77.

  35. Garneau J, Dupuis M, Villion M, Romero D, Barrangou R, Boyaval P, Fremaux C, Horvath P, Magadan AH, Moineau S. The CRISPR/Cas bacterial immune system cleaves bacteriophage and plasmid DNA. Nature. 2010;468(7320):67-71.

  36. Datsenko K, Pougach K, Tikhonov A, Wanner B, Severinov K, Semenova E. Molecular memory of prior infections activates the CRISPR/Cas adaptive bacterial immunity system. Nature Commun. 2012;3:945.

  37. Mojica F, Diez-Villasenor C, Garcia-Martinez J. Short motif sequences determine the targets of the prokaryotic CRISPR defence system. Microbiology. 2009;155(3): 733-40.

  38. Brouns S, Jore M, Lundgren M, Westra E, Slijkhuis R, Snijders A, Dickman MJ, Makarova KS, Koonin EV, van der Oost J. Small CRISPR RNAs guide antiviral defense in prokaryotes. Science. 2008;321(5891):960-4.

  39. Wilkinson R, Wiedenheft B. A CRISPR method for genome engineering. F1000Prime Rep. 2014;6.

  40. Marraffini L, Sontheimer E. CRISPR interference: RNA-directed adaptive immunity in bacteria and archaea. Nature Rev Gen. 2010;11(3):181-90.

  41. Zhang H, Zhang J, Wei P, Zhang B, Gou F, Feng Z, Mao Y, Zhang H, Xu N, Zhu JK. The CRISPR/Cas9 system produces specific and homozygous targeted gene editing in rice in one generation. Plant Biotechnol J. 2014;12(6):797-807.

  42. Gao J, Wang G, Ma S, Xie X, Wu X, Zhang X, Wu Y, Zhao P, Xia Q. CRISPR/Cas9-mediated targeted mutagenesis in nicotiana tabacum. Plant Mol Biol. 2014;87(1-2): 99-110.

  43. Li D, Qiu Z, Shao Y, Chen Y, Guan Y, Liu M, Li Y, Gao N, Wang L, Lu X, Zhao Y. Heritable gene targeting in the mouse and rat using a CRISPR-Cas system. Nature Biotechnol. 2013;31(8):681-3.

  44. Gori J, Hsu P, Maeder M, Shen S, Welstead G, Bumcrot D. Delivery and specificity of CRISPR/Cas9 genome editing technologies for human gene therapy. Human Gene Ther. 2015;26(7):443-51.

  45. Hacein-Bey-Abina S, Garrigue A, Wang G, Soulier J, Lim A, Morillon E, Clappier E, Caccavelli L, Delabesse E, Beldjord K, Asnafi V, MacIntyre E, Dal Cortivo L, Radford I, Brousse N, Sigaux F, Moshous D, Hauer J, Borkhardt A, Belohradsky B, Wintergerst U, Velez M, Leiva L, Sorensen R, Wulffraat N, Blanche S, Bushman F, Fischer A, Cavazzana-Calvo M. Insertional oncogenesis in 4 patients after retrovirus-mediated gene therapy of SCID-X1. J Clin Invest. 2008;118(9):3132-42.

  46. Hsu P, Scott D, Weinstein J, Ran F, Konermann S, Agarwala V, Li Y, Fine EJ, Wu X, Shalem O, Cradick TJ, Marraffini LA, Bao G, Zhang F. DNA targeting specificity of RNA-guided Cas9 nucleases. Nature Biotechnol. 2013;31(9):827-32.

  47. Pattanayak V, Lin S, Guilinger J, Ma E, Doudna J, Liu D. High-throughput profiling of off-target DNA cleavage reveals RNA-programmed Cas9 nuclease specificity. Nature Biotechnol. 2013;31(9):839-43.

  48. Carroll D. Staying on target with CRISPR-Cas. Nat Bio-technol. 2013;31(9):807-9.

  49. Mali P, Aach J, Stranges P, Esvelt K, Moosburner M, Kosuri S, Kosuri S, Yang L, Church GM. CAS9 transcriptional activators for target specificity screening and paired nickases for cooperative genome engineering. Nature Biotechnol. 2013;31(9):833-8.

  50. Ran F, Hsu P, Lin C, Gootenberg J, Konermann S, Trevino A, Scott DA, Inoue A, Matoba S, Zhang Y, Zhang F. Double nicking by RNA-guided CRISPR Cas9 for enhanced genome editing specificity. Cell. 2013;155(2):479-80.

  51. Fu Y, Sander J, Reyon D, Cascio V, Joung J. Improving CRISPR-Cas nuclease specificity using truncated guide RNAs. Nature Biotechnol. 2014;32(3):279-84.

  52. Tsai S, Wyvekens N, Khayter C, Foden J, Thapar V, Reyon D, Goodwin MJ, Aryee MJ, Joung JK. Dimeric CRISPR RNA-guided FokI nucleases for highly specific genome editing. Nature Biotechnol. 2014;32(6):569-76.

  53. Guilinger J, Thompson D, Liu D. Fusion of catalytically inactive Cas9 to FokI nuclease improves the specificity of genome modification. Nature Biotechnol. 2014;32(6):577-82.

  54. Ran F, Cong L, Yan W, Scott D, Gootenberg J, Kriz A, Zetsche B, Shalem O, Wu X, Makarova KS, Koonin EV, Sharp PA, Zhang F. In vivo genome editing using Staphylococcus aureus Cas9. Nature. 2015;520(7546): 186-91.

  55. Hou Z, Zhang Y, Propson N, Howden S, Chu L, Sontheimer E, Thomson JA. Efficient genome engineering in human pluripotent stem cells using Cas9 from Neisseria meningitidis. Proc Natl Acad Sci USA. 2013;110(39):15644-9.

  56. Veres A, Gosis B, Ding Q, Collins R, Ragavendran A, Brand H, Erdin S, Cowan CA, Talkowski ME, Musunuru K. Low incidence of off-target mutations in individual CRISPR-Cas9 and TALEN targeted human stem cell clones detected by whole-genome sequencing. Cell Stem Cell. 2014;15(2):254.

  57. Smith C, Gore A, Yan W, Abalde-Atristain L, Li Z, He C, Wang Y, Brodsky RA, Zhang K, Cheng L, Ye Z. Whole-genome sequencing analysis reveals high specificity of CRISPR/Cas9 and TALEN-based genome editing in human iPSCs. Cell Stem Cell. 2014;15(1):12-13.

  58. Wu X, Scott D, Kriz A, Chiu A, Hsu P, Dadon DB, Cheng AW, Trevino AE, Konermann S, Chen S, Jaenisch R, Zhang F, Sharp PA. Genome-wide binding of the CRISPR endonuclease Cas9 in mammalian cells. Nature Biotechnol. 2014;32(7):670-6.

  59. Li M, Suzuki K, Kim N, Liu G, Izpisua Belmonte J. A cut above the rest: targeted genome editing technologies in human pluripotent stem cells. J Biol Chem. 2013;289(8):4594-9.

  60. Kim E, Kang K, Ju J. CRISPR-Cas9: a promising tool for gene editing on induced pluripotent stem cells. Korean J Intern Med. 2017;32(1):42-61.

  61. Sebastiano V, Zhen H, Haddad B, Bashkirova E, Melo S, Wang P, Leung TL, Siprashvili Z, Tichy A, Li J, Ameen M, Hwakins J, Lee S, Li L, Schwertschkow A, Bauer G, Lisowski L, Kay MA, Kim SK, Lane AT, Wernig M, Oro AE. Human COL7A1-corrected induced pluripotent stem cells for the treatment of recessive dystrophic epidermolysis bullosa. Sci Transl Med. 2014;6(264):264ra163.

  62. Musunuru K. Genome editing of human pluripotent stem cells to generate human cellular disease models. Disease Models Mech. 2013;6(4):896-904.

  63. Hockemeyer D, Jaenisch R. Induced pluripotent stem cells meet genome editing. Cell Stem Cell. 2016;18(5):573-86.

  64. Doudna J, Charpentier E. The new frontier of genome engineering with CRISPR-Cas9. Science. 2014;346(6213): 1258096.

  65. Mali P, Esvelt K, Church G. Cas9 as a versatile tool for engineering biology. Nature Methods. 2013;10(10):957-63.

  66. Grobarczyk B, Franco B, Hanon K, Malgrange B. Generation of isogenic human iPS cell line precisely corrected by genome editing using the CRISPR/Cas9 system. Stem Cell Rev Rep. 2015;11(5):774-87.

  67. Orqueda A, Gimenez C, Pereyra-Bonnet F. iPSCs: A mini-review from bench to bed, including organoids and the CRISPR system. Stem Cells Int. 2016;2016:1-9.

  68. Stankiewicz P, Lupski J. Structural variation in the human genome and its role in disease. Ann Rev Med. 2010;61(1):437-55.

  69. Hoffman E, Brown R, Kunkel L. Dystrophin: the protein product of the Duchenne muscular dystrophy locus. Cell. 1987;51(6):919-28.

  70. Campbell K, Kahl S. Association of dystrophin and an integral membrane glycoprotein. Nature. 1989;338(6212): 259-62.

  71. Lu Q, Yokota T, Takeda S, Garcia L, Muntoni F, Partridge T. The status of exon skipping as a therapeutic approach to Duchenne muscular dystrophy. Mol Ther. 2011;19(1):9-15.

  72. Lu Q, Mann C, Lou F, Bou-Gharios G, Morris G, Xue S, Fletcher S, Partridge TA, Wilton SD. Functional amounts of dystrophin produced by skipping the mutated exon in the Mdx dystrophic mouse. Nature Med. 2003;9(8):1009-14.

  73. Echigoya Y, Aoki Y, Miskew B, Panesar D, Touznik A, Nagata T, Tanihata J, Nakamura A, Nagaraju K, Yokota T. Long-term efficacy of systemic multiexon skipping targeting dystrophin exons 45-55 with a cocktail of vivo-morpholinos in Mdx52 mice. Mol Ther-Nucleic Acids. 2015;4:e225.

  74. van Deutekom J, Janson A, Ginjaar I, Frankhuizen W, Aartsma-Rus A, Bremmer-Bout M, den Dunnen JT, Koop K, van der Kooi AJ, Goemans NM, de Kimpe SJ, Ekhart PF, Venneker EH, Platenburg GJ, Verschuuren JJ, van Ommen GJ. Local dystrophin restoration with antisense oligonucleotide PRO051. N Engl J Med. 2007;357(26):2677-86.

  75. Kinali M, Arechavala-Gomeza V, Feng L, Cirak S, Hunt D, Adkin C, Cuglieri M, Ashton E, Abbs S, Nihoyannopoulos P, Garralda ME, Rutherfors M, McGulley C, Popplewell L, Graham IR, Dickson G, Wood MJ, Wells DJ, Wilton SD, Kole R, Straub V, Bushby K, Sewry C, Morgan JE, Muntoni F. Local restoration of dystrophin expression with the morpholino oligomer AVI-4658 in Duchenne muscular dystrophy: a single-blind, placebo-controlled, dose-escalation, proof-of-concept study. Lancet Neurol. 2009;8(10):918-28.

  76. Aartsma-Rus A, Fokkema I, Verschuuren J, Ginjaar I, van Deutekom J, van Ommen G, den Dunnen JT. Theoretic applicability of antisense-mediated exon skipping for Duchenne muscular dystrophy mutations. Human Mutation. 2009;30(3):293-9.

  77. Goyenvalle A, Griffith G, Babbs A, Andaloussi S, Ezzat K, Avril A, Dugovic B, Chaussenot R, Ferry A, Voit T, Amthor H, Bihr C, Schirch S, Wood MJ, Davies KE, Vaillend C, Leumann C, Garcia L. Functional correction in mouse models of muscular dystrophy using exon-skipping tricyclo-DNA oligomers. Nature Med. 2015;21(3):270-5.

  78. Ousterout D, Perez-Pinera P, Thakore P, Kabadi A, Brown M, Qin X, Fedrigo O, Mouly V, Tremblay JP, Gersbach CA. Reading frame correction by targeted genome editing restores dystrophin expression in cells from Duchenne muscular dystrophy patients. Mol Ther. 2013;21(9):1718-26.

  79. Rousseau J, Chapdelaine P, Boisvert S, Almeida L, Corbeil J, Montpetit A, Tremblay JP. Endonucleases: tools to correct the dystrophin gene. J Gene Med. 2011;13(10):522-37.

  80. Cornu T, Thibodeau-Beganny S, Guhl E, Alwin S, Eichtinger M, Joung J, Cathomen T. DNA-binding specificity is a major determinant of the activity and toxicity of zinc-finger nucleases. Mol Ther. 2008;16(2):352-8.

  81. Guilinger J, Pattanayak V, Reyon D, Tsai S, Sander J, Joung J, Liu DR. Broad specificity profiling of TALENs results in engineered nucleases with improved DNA-cleavage specificity. Nature Methods. 2014;11(4):429-35.

  82. Surya Bansi S, Deepa S. CRISPR/Cas9: a toolbox with clinical potential. Int J Cell Sci Mol Biol. 2016; 1(1):555554.

  83. Long C, McAnally J, Shelton J, Mireault A, Bassel-Duby R, Olson E. Prevention of muscular dystrophy in mice by CRISPR/Cas9-mediated editing of germline DNA. Science. 2014;345(6201):1184-8.

  84. Wu Y, Liang D, Wang Y, Bai M, Tang W, Bao S, Yan Z, Li D, Li J. Correction of a genetic disease in mouse via use of CRISPR-Cas9. Cell Stem Cell. 2013;13(6):659-62.

  85. Wu Y, Zhou H, Fan X, Zhang Y, Zhang M, Wang Y, Xie Z, Bai M, Yin Q, Liang D, Tang W. Correction of a genetic disease by CRISPR-Cas9-mediated gene editing in mouse spermatogonial stem cells. Cell Res. 2014;25(1): 67-79.

  86. Yan S, Tu Z, Li S, Li X. Use of CRISPR/Cas9 to model brain diseases. Prog Neuro-Psychopharmacol Bio Psych. 2018;81:488-92.

  87. Platt R, Chen S, Zhou Y, Yim M, Swiech L, Kempton H, Dahlman JE, Parnas O, Eisenhaure TM, Jovanovic M, Graham DB, Jhunjhunwla S, Heidenreich M, Xavier RJ, Langer R, Anderson DG, Hacohen N, Regev A, Feng G, Sharp PA, Zhang F. CRISPR-Cas9 knockin mice for genome editing and cancer modeling. Cell. 2014;159(2):440-55.

  88. Walters B, Azam A, Gillon C, Josselyn S, Zovkic I. Advanced in vivo use of CRISPR/Cas9 and antisense DNA inhibition for gene manipulation in the brain. Front Gen. 2016;6:362.

  89. Heidenreich M, Zhang F. Applications of CRISPR-Cas systems in neuroscience. Nature Rev Neurosci. 2015;17(1):36-44.

  90. Liao H, Gu Y, Diaz A, Marlett J, Takahashi Y, Li M, Suzuki K, Xu R, Hishida T, Chang CJ, Esteban CR, Young J, Izpisua Belmonte JC. Use of the CRISPR/Cas9 system as an intracellular defense against HIV-1 infection in human cells. Nature Commun. 2015;6:6413.

  91. Schumann K, Lin S, Boyer E, Simeonov D, Subramaniam M, Gate RE, Haliburton GE, Ye CJ, Bluestone JA, Doudna JA, Marson A. Generation of knock-in primary human T cells using Cas9 ribonucleoproteins. Proc Natl Acad Sci USA. 2015;112(33):10437-442.

  92. Piel F. The present and future global burden of the inherited disorders of hemoglobin. Hematol/Oncol Clin North Am. 2016;30(2):327-41.

  93. Pawliuk R. Correction of sickle cell disease in transgenic mouse models by gene therapy. Science. 2001;294(5550):2368-71.

  94. Levasseur D. Correction of a mouse model of sickle cell disease: lentiviral/antisickling-globin gene transduction of unmobilized, purified hematopoietic stem cells. Blood. 2003;102(13):4312-9.

  95. Huang X, Wang Y, Yan W, Smith C, Ye Z, Wang J, Gao Y, Mendelsohn L, Cheng L. Production of genecorrected adult beta globin protein in human erythrocytes differentiated from patient iPSCs after genome editing of the sickle point mutation. Stem Cells. 2015;33(5):1470-9.

  96. Yi L, Li J. CRISPR-Cas9 therapeutics in cancer: promising strategies and present challenges. Biochimica Biophysica Acta. 2016;1866(2):197-207.

  97. Estrela R, Cate J. Energy biotechnology in the CRISPR-Cas9 era. Curr Op Biotechnol. 2016;38:79-84.

  98. DiCarlo J, Norville J, Mali P, Rios X, Aach J, Church G. Genome engineering in Saccharomyces cerevisiae using CRISPR-Cas systems. Nucleic Acids Res. 2013;41(7):4336-43.

  99. Mans R, van Rossum H, Wijsman M, Backx A, Kuijpers N, van den Broek M, Daran-Lapujade P, Pronk JT, van Maris AJ, Daran JM. CRISPR/Cas9: a molecular Swiss army knife for simultaneous introduction of multiple genetic modifications in saccharomyces cerevisiae. FEMS Yeast Res. 2015;15(2):fov004.

  100. Liu R, Chen L, Jiang Y, Zhou Z, Zou G. Efficient genome editing in filamentous fungus Trichoderma reesei using the CRISPR/Cas9 system. Cell Discov. 2015;1:15007.

  101. Jacobs T, LaFayette P, Schmitz R, Parrott W. Targeted genome modifications in soybean with CRISPR/Cas9. BMC Biotechnol. 2015;15(1):16.

  102. Jiang W, Zhou H, Bi H, Fromm M, Yang B, Weeks D. Demonstration of CRISPR/Cas9/sgRNA-mediated targeted gene modification in arabidopsis, tobacco, sorghum and rice. Nucleic Acids Res. 2013;41(20):e188.

  103. Cobb R, Wang Y, Zhao H. High-efficiency multiplex genome editing of streptomyces species using an engineered CRISPR/Cas system. ACS Synth Biol. 2014;4(6):723-8.

  104. Jiang Y, Chen B, Duan C, Sun B, Yang J, Yang S. Erratum for Jiang et al., multigene editing in the escherichia coli genome via the CRISPR-Cas9 system. Appl Environ Microbiol. 2016;82(12):3693.

  105. Jiang W, Bikard D, Cox D, Zhang F, Marraffini L. RNA-guided editing of bacterial genomes using CRISPR-Cas systems. Nature Biotechnol. 2013;31(3):233-9.

  106. Qasim W, Gennery A. Gene therapy for primary immu-nodeficiencies: current status and future prospects. Drugs. 2014;74(9):963-9.

  107. Kaufmann K, Chiriaco M, Siler U, Finocchi A, Reichenbach J, Stein S, Grez M. Gene therapy for chronic granulomatous disease: current status and future perspectives. Curr Gene Ther. 2014;14(6):447-60.

  108. Wang W, Ye C, Liu J, Zhang D, Kimata J, Zhou P. CCR5 gene disruption via lentiviral vectors expressing Cas9 and single guided RNA renders cells resistant to HIV-1 infection. PLoS One. 2014;9(12):e115987.

  109. Khalili K, Kaminski R, Gordon J, Cosentino L, Hu W. Genome editing strategies: potential tools for eradicating HIV-1/AIDS. J NeuroVirol. 2015;21(3):310-21.

  110. Hu W, Kaminski R, Yang F, Zhang Y, Cosentino L, Li F, Luo B, Alvarez-Carbonell D, Garcia-Mesa Y, Karn J, Mo X, Khalili K. RNA-directed gene editing specifically eradicates latent and prevents new HIV-1 infection. Proc Natl Acad Sci USA. 2014;111(31):11461-6.

  111. Mandal P, Ferreira L, Collins R, Meissner T, Boutwell C, Friesen M, Vrbanac V, Garrison BS, Stortchevoi A, Bryder D, Musunuru K, Brand H, Tager AM, Allen TM, Talkowski ME, Rossi DJ, Cowan CA. Efficient ablation of genes in human hematopoietic stem and effector cells using CRISPR/Cas9. Cell Stem Cell. 2014;15(5): 643-52.

  112. Huang Z, Nair M. A CRISPR/Cas9 guidance RNA screen platform for HIV provirus disruption and HIV/AIDS gene therapy in astrocytes. Sci Rep. 2017;7(1):5955.

  113. Luo Y, Zhu D, Zhang Z, Chen Y, Sun X. Integrative analysis of CRISPR/Cas9 target sites in the human HBB gene. BioMed Res Int. 2015; 2015:1-9.

  114. Park C, Halevy T, Lee D, Sung J, Lee J, Yanuka O, Yanuko O, Benvenisty N, Kim DW. Reversion of FMR1 methylation and silencing by editing the triplet repeats in fragile X iPSC-derived neurons. Cell Rep [Internet]. 2015;13(2):234-41. doi: 10.1016/j.celrep.2015.08.084.

  115. Schaefer K, Wu W, Colgan D, Tsang S, Bassuk A, Mahajan V. Unexpected mutations after CRISPR-Cas9 editing in vivo. Nature Methods. 2017;14(6):547-8.

  116. Vetter N. Sudden cardiac death and ethical issues of CRISPR technology. Brit Med Bull. 2017;122(1):1-3.

ЦИТИРОВАНО В
  1. Rowe Laura, Ethics and Systems Thinking in Biochemistry: A CRISPR-Based Activity for Undergraduate Students, Journal of Chemical Education, 97, 7, 2020. Crossref

1794 Просмотры статей 33 Загрузка статей Метрики
1794 ПРОСМОТРЫ 33 ЗАГРУЗКИ 1 Crossref ЦИТАТЫ Google
Scholar
ЦИТАТЫ

Статьи с похожим содержанием:

Current Perspectives on Novel Drug Carrier Systems and Therapies for Management of Pancreatic Cancer: An Updated Inclusive Review Critical Reviews™ in Therapeutic Drug Carrier Systems, Vol.35, 2018, issue 3
Rohit Bhosale, Bannimath Gurupadayya, Devegowda Vishakante Gowda, Koganti Venkata Sairam, Riyaz Ali Mahafez Ali Osmani, Rudra Vaghela, Hosahalli Veerabhadrappa Gangadharappa, Parthasarathi Keshavarao Kulkarni
Neuromodulation of Aggression: Valuable Therapeutic Intervention or Dangerous Mind Control? Ethics in Biology, Engineering and Medicine: An International Journal, Vol.8, 2017, issue 1
D. John Doyle
Genomic Alterations to Guide Treatment Selection in Metastatic Prostate Cancer Critical Reviews™ in Oncogenesis, Vol.27, 2022, issue 1
Amy Davies, Arun A. Azad, Edmond M. Kwan
Applications and Risks of Nanomaterials Used in Regenerative Medicine, Delivery Systems, Theranostics, and Therapy Critical Reviews™ in Therapeutic Drug Carrier Systems, Vol.34, 2017, issue 1
Danae Garcia-Viacobo, Franklin A. Carrero- Martinez, Estefany I. Medina-Reyes, Yolanda Irasema Chirino
Receptor-Targeted Surface-Engineered Nanomaterials for Breast Cancer Imaging and Theranostic Applications Critical Reviews™ in Therapeutic Drug Carrier Systems, Vol.39, 2022, issue 6
Parameswara Rao Vuddanda, Teeja Suthar, Md. Rizwanullah, Mohammad Zaki Ahmad, Hassan A. Albarqi, Javed Ahmad, Mohammad Ahmed Khan, Keerti Jain

Статьи, принятые к публикации

PRMT6 promotes the immune evasion of gastric cancer via upregulating ANXA1 Liang Xu, Fenger Zhang, Binqi Yu, Shengnan Jia, Sunfu Fan PURPL promotes M2 macrophage polarization in lung cancer via regulating RBM4/xCT signaling Jipeng Guo, Chongwen Gong, Hao Wang SIAH1 promotes the pyroptosis of cardiomyocytes in diabetic cardiomyopathy via regulating IκB-α/NF-κB signaling Jinbin Wu, Yaoming Yan SLC7A2-mediated lysine catabolism inhibits immunosuppression in triple negative breast cancer Yuanyuan Sun, Yaqing Li, Chengying Jiang, Chenying Liu, Yuanming Song SIAH2-mediated degradation of ACSL4 inhibits the anti-tumor activity of CD8+ T cells in hepatocellular carcinoma Fangzheng Shu, Yuhua Shi, Xiangxiang Shan, Wenzhang Zha, Rengen Fan, Wanjiang Xue RBM15-mediated N6-methyl adenosine (m6A) modification of EZH2 drives the epithelial-mesenchymal transition of cervical cancer Ruixue Wang, Wenhua Tan Evidence-Based Storytelling and A Strategic Roadmap to Promote Cancer Prevention Via Adolescent HPV Vaccination in Northern New England Matthew Dugan, Gary Stein, Jan Carney, Sheila Clifford-Bova KDM4A-AS1 promotes cell proliferation, migration and invasion via the miR-4306/STX6 axis in hepatocellular carcinoma Wei Cao, Yuhan Ren, Ying Liu, Guoshu Cao, Zhen Chen, Fan Wang HDAC1-mediated downregulation of NEU1 exacerbates the aggressiveness of cervical cancer Nanzi Xie, Sisi Mei, Changlan Dai, Wei Chen Effect of miR-26b-5p on progression of acute myeloid leukemia by regulating USP48-mediated Wnt/β-catenin pathway Yu Xie, Lin Tan, Kun Wu, Deyun Li, Chengping Li
Портал Begell Электронная Бибилиотека e-Книги Журналы Справочники и Сборники статей Коллекции Цены и условия подписки Begell House Контакты Language English 中文 Русский Português German French Spain