Доступ предоставлен для: Guest
Портал Begell Электронная Бибилиотека e-Книги Журналы Справочники и Сборники статей Коллекции
Critical Reviews™ in Eukaryotic Gene Expression
Импакт фактор: 1.841 5-летний Импакт фактор: 1.927 SJR: 0.649 SNIP: 0.516 CiteScore™: 1.96

ISSN Печать: 1045-4403
ISSN Онлайн: 2162-6502

Выпуски:
Том 29, 2019 Том 28, 2018 Том 27, 2017 Том 26, 2016 Том 25, 2015 Том 24, 2014 Том 23, 2013 Том 22, 2012 Том 21, 2011 Том 20, 2010 Том 19, 2009 Том 18, 2008 Том 17, 2007 Том 16, 2006 Том 15, 2005 Том 14, 2004 Том 13, 2003 Том 12, 2002 Том 11, 2001 Том 10, 2000 Том 9, 1999 Том 8, 1998 Том 7, 1997 Том 6, 1996 Том 5, 1995 Том 4, 1994

Critical Reviews™ in Eukaryotic Gene Expression

DOI: 10.1615/CritRevEukarGeneExpr.v21.i2.60
pages 177-185

The Role of BMP2 Signaling in the Skeleton

Jonathan W. Lowery
Department of Developmental Biology, Harvard School of Dental Medicine, Boston, MA, USA
Dorothy Pazin
Department of Developmental Biology, Harvard School of Dental Medicine, Boston, MA, USA
Giuseppe Intini
Department of Developmental Biology, Harvard School of Dental Medicine, Boston, MA, USA
Shoichiro Kokabu
Department of Developmental Biology, Harvard School of Dental Medicine, Boston, MA, USA
Vivianne Chappuis
Department of Developmental Biology, Harvard School of Dental Medicine, Boston, MA, USA
Luciane P. Capelo
Department of Developmental Biology, Harvard School of Dental Medicine, Boston, MA, USA
Vicki Rosen
Harvard University

Краткое описание

While new roles for the adult skeleton as an endocrine organ continue to emerge, our understanding of how bone homeostasis is maintained is also changing. Here we focus on BMP2, a molecule identified by its ability to induce bone formation at extraskeletal sites. We detail specific roles for BMP2 in the adult skeleton, where it acts to regulate the differentiation of periosteal skeletal progenitors during fracture healing and also mediates osteoblast formation in the bone marrow microenvironment. We highlight two areas of BMP2 biology that deserve further study: the specific signaling pathways used by BMP2 to affect bone formation, and the factors that regulate BMP2 production in the adult skeleton. These activities serve to distinguish BMP2 from other members of the TGF-b/BMP/Activin gene superfamily.


Articles with similar content:

Structure and Function of the Immune Semaphorin CD100/SEMA4D
Critical Reviews™ in Immunology, Vol.23, 2003, issue 1-2
Abdellah Elhabazi, Armand Bensussan, Laurence Boumsell, Isabelle Chabbert-de Ponnat, Anne Marie-Cardine
Regulatory Controls for Osteoblast Growth and Differentiation: Role of Runx/Cbfa/AML Factors
Critical Reviews™ in Eukaryotic Gene Expression, Vol.14, 2004, issue 1&2
Sayyed Kaleem Zaidi, Janet L. Stein, Jane B. Lian, Martin Montecino, Andre J. van Wijnen, Amjad Javed, Gary S. Stein, Christopher Lengner
Thymus-Derived Signals Regulate Early T-Cell Development
Critical Reviews™ in Immunology, Vol.25, 2005, issue 2
Thomas M. Schmitt, Juan Carlos Zuniga-Pflucker
Structural and Functional Properties of the Actin Gene Family
Critical Reviews™ in Eukaryotic Gene Expression, Vol.21, 2011, issue 3
Tina M. Bunnell , James M. Ervasti
Signaling Networks that Control the Lineage Commitment and Differentiation of Bone Cells
Critical Reviews™ in Eukaryotic Gene Expression, Vol.19, 2009, issue 1
Shuying Yang, Wei Chen, Carrie S. Soltanoff, Yi-Ping Li