Доступ предоставлен для: Guest
Портал Begell Электронная Бибилиотека e-Книги Журналы Справочники и Сборники статей Коллекции
Critical Reviews™ in Eukaryotic Gene Expression
Импакт фактор: 1.841 5-летний Импакт фактор: 1.927 SJR: 0.649 SNIP: 0.516 CiteScore™: 1.96

ISSN Печать: 1045-4403
ISSN Онлайн: 2162-6502

Выпуски:
Том 30, 2020 Том 29, 2019 Том 28, 2018 Том 27, 2017 Том 26, 2016 Том 25, 2015 Том 24, 2014 Том 23, 2013 Том 22, 2012 Том 21, 2011 Том 20, 2010 Том 19, 2009 Том 18, 2008 Том 17, 2007 Том 16, 2006 Том 15, 2005 Том 14, 2004 Том 13, 2003 Том 12, 2002 Том 11, 2001 Том 10, 2000 Том 9, 1999 Том 8, 1998 Том 7, 1997 Том 6, 1996 Том 5, 1995 Том 4, 1994

Critical Reviews™ in Eukaryotic Gene Expression

DOI: 10.1615/CritRevEukarGeneExpr.v7.i4.10
pages 281-298

Molecular Mechanisms of Adipocyte Differentiation and Inhibitory Action of Pref-1

Cynthia M. Smas
Department of Nutritional Sciences, University of California, Berkeley CA 94720
Hei Sook Sul
Department of Nutritional Sciences, University of California, Berkeley CA 94720

Краткое описание

Commitment and differentiation of adipocytes is governed by transcription factors that are under the control of the combinatorial effects of hormonal and cell-cell and cell-matrix interaction. Established preadipocyte cell lines, such as 3T3-Ll, 3T3-F442A, and Ob 17, have made it possible to examine the molecular details of the differentiation process. Differentiation is accompanied by dramatic increases in adipocyte genes, including adipocyte fatty acid-binding protein and lipid-metabolizing enzymes. Transcription factors PPARγ and C/EBP have been shown to transactivate some of the adipocyte-expressed genes. By integrating hormonal and metabolic cues, these nuclear factors may synergistically function in adipocyte lineage determination and differentiation. Adipocyte differentiation involves drastic cell shape alterations that are accompanied by changes in expression of cytoskeletal and extracellular matrix proteins, including decreases in actin and tubulin levels. Pref-1, an EGF-repeat containing transmembrane protein, is highly expressed in preadipocytes; this expression is totally abolished after differentiation to adipocytes. Pref-1 is inhibitory for adipocyte differentiation and processing of transmembrane pref-1 generates a biologically active soluble form corresponding to the ectodomain. Interaction of the EGF-repeats of pref-1 with an as yet unidentified receptor may mediate the inhibitory effects of pref-1 in adipocyte differentiation, thereby affecting nuclear events accompanying adipogenesis.