Доступ предоставлен для: Guest
Портал Begell Электронная Бибилиотека e-Книги Журналы Справочники и Сборники статей Коллекции
Atomization and Sprays
Импакт фактор: 1.262 5-летний Импакт фактор: 1.518 SJR: 0.814 SNIP: 1.18 CiteScore™: 1.6

ISSN Печать: 1044-5110
ISSN Онлайн: 1936-2684

Том 29, 2019 Том 28, 2018 Том 27, 2017 Том 26, 2016 Том 25, 2015 Том 24, 2014 Том 23, 2013 Том 22, 2012 Том 21, 2011 Том 20, 2010 Том 19, 2009 Том 18, 2008 Том 17, 2007 Том 16, 2006 Том 15, 2005 Том 14, 2004 Том 13, 2003 Том 12, 2002 Том 11, 2001 Том 10, 2000 Том 9, 1999 Том 8, 1998 Том 7, 1997 Том 6, 1996 Том 5, 1995 Том 4, 1994 Том 3, 1993 Том 2, 1992 Том 1, 1991

Atomization and Sprays

DOI: 10.1615/AtomizSpr.v7.i3.50
pages 317-337


G. Chen
Department of Mechanical Engineering, The University of Illinois at Chicago, Chicago, Illinois, USA
Suresh Aggarwal
Department of Mechanical and Industrial Engineering University of Illinois at Chicago
Thomas A. Jackson
Air Force Aero-Propulsion Laboratory, Fuel and Lubrication Division, WRDC/POSF, Wright Patterson Air Force Base, Ohio, USA
G. L. Switzer
Wright Patterson Air Force Base, Ohio, USA

Краткое описание

The dynamics and vaporization of both pure and multicomponent fuel droplets in a laminar-flow field are investigated. Extensive data are obtained on the velocity and size history of a fuel droplet injected into a well-characterized hot laminar flow. Fuels considered are n-hexane, n-decane, and a bicomponent mixture of equal amounts of hexane and decane. The droplet velocity and size histories are measured by phase Doppler particle analyzer, and compared with the predictions from three different liquid-phase models, the infinite-diffusion, diffusion-limit, and thin-skin models. Predicted results generally show good agreement with measured data. For the conditions of this study, it is shown that the use of a solid-sphere, steady-state drag law adequately reproduces the measured velocity history for small to moderate droplet accelerations, provided the variable-property effects are included in the model. However, the quasi-steady drag equation is not able to capture either the large deceleration experienced by the droplet near the injection location, nor the measured inflection point, where the droplet acceleration changes sign, underscoring the importance of unsteady effects on droplet motion. The comparison of vaporization history indicates that, under relatively low-temperature conditions, the predictions of both the infinite-diffusion and the diffusion-limit models are in close agreement with experiments. However, the thin-skin model overpredicts the vaporization rate, and shows significant differences with experiments, especially for less volatile (n-decane) and multicomponent fuel droplets. The comparison also indicates that the thermophysical properties of the gas film surrounding the droplet should be calculated accurately; in particular, the effect of fuel vapor should be considered.