Доступ предоставлен для: Guest
Портал Begell Электронная Бибилиотека e-Книги Журналы Справочники и Сборники статей Коллекции
Atomization and Sprays
Импакт фактор: 1.737 5-летний Импакт фактор: 1.518 SJR: 0.814 SNIP: 1.18 CiteScore™: 2.2

ISSN Печать: 1044-5110
ISSN Онлайн: 1936-2684

Выпуски:
Том 30, 2020 Том 29, 2019 Том 28, 2018 Том 27, 2017 Том 26, 2016 Том 25, 2015 Том 24, 2014 Том 23, 2013 Том 22, 2012 Том 21, 2011 Том 20, 2010 Том 19, 2009 Том 18, 2008 Том 17, 2007 Том 16, 2006 Том 15, 2005 Том 14, 2004 Том 13, 2003 Том 12, 2002 Том 11, 2001 Том 10, 2000 Том 9, 1999 Том 8, 1998 Том 7, 1997 Том 6, 1996 Том 5, 1995 Том 4, 1994 Том 3, 1993 Том 2, 1992 Том 1, 1991

Atomization and Sprays

DOI: 10.1615/AtomizSpr.v19.i9.10
pages 809-831

ASSESSMENT OF PARAMETERS FOR DISTINGUISHING DROPLET SHAPE IN A SPRAY FIELD USING IMAGE-BASED TECHNIQUES

Sina Ghaemi
Payam Rahimi
Department of Mechanical Engineering, University of Alberta, Edmonton, Alberta T6G 2G8, CANADA
David S. Nobes
University of Alberta, Department of Mechanical Engineering, Edmonton, T6G 2G8, Alberta, Canada

Краткое описание

Quantification of droplet shape in a spray field can elucidate several characteristics and mechanisms of the atomization process such as droplet deformation, breakup, and collision. To identify an optimum parameter for accurate quantification of droplet shape using image-based measurement systems, several parameters from different applications are presented in terms of their mathematical definition, calculation procedure, and characteristics. An experimental investigation using a shadowgraph droplet analyzer is also conducted to provide visual evidence of droplet shape in a spray field. The droplets from this data set are classified based on their shape into three categories, namely, spheres, deformed droplets, and ligaments. The capability of the shape parameters in distinguishing between these droplet groups is investigated using a simulation and the collected droplet images. Many of the parameters have insufficient resolution to distinguish between different droplet shapes. A new scaling parameter is applied to each of the parameters to distinguish droplets that are purely convex (spheres and deformed droplets) from those that have concavity (ligaments). From those investigated, an optimum shape parameter is suggested to distinguish the three droplet groups.


Articles with similar content:

SPRAY BEHAVIOR OF THE ROTARY ATOMIZER WITH IN-LINE INJECTION ORIFICES
Atomization and Sprays, Vol.20, 2010, issue 10
Seong Ho Jang, Seong Man Choi
A FLUID-DYNAMICALLY OPTIMUM PARTICLE TRACKING METHOD FOR 2-D PTV: TRIPLE PATTERN MATCHING ALGORITHM
Transport Phenomena in Thermal Engineering. Volume 2, Vol.0, 1993, issue
Koichi Nishino, Kahoru Torii
DROP-IMPINGING BEHAVIOR ON STRUCTURED SURFACES−A SHORT REVIEW
Atomization and Sprays, Vol.24, 2014, issue 9
Woo Shik Kim, Sang Yong Lee
ANALYSIS OF IMPACT OF DROPLETS ON HORIZONTAL SURFACES
ICHMT DIGITAL LIBRARY ONLINE, Vol.1, 2000, issue
E. N. Ganic, S. Sikalo, Marco Marengo, Cameron Tropea
WETTING ON GELS: HOWTHE GEL CHARACTERISTICS AFFECT THE CONTACT LINE DYNAMICS
Interfacial Phenomena and Heat Transfer, Vol.1, 2013, issue 3
Laurent Limat, Philippe Brunet, Laurent Royon, Adrian Daerr, Francois Lequeux, Tadashi Kajiya, Tetsuharu Narita