Доступ предоставлен для: Guest
Портал Begell Электронная Бибилиотека e-Книги Журналы Справочники и Сборники статей Коллекции
Atomization and Sprays
Импакт фактор: 1.189 5-летний Импакт фактор: 1.596 SJR: 0.814 SNIP: 1.18 CiteScore™: 1.6

ISSN Печать: 1044-5110
ISSN Онлайн: 1936-2684

Выпуски:
Том 28, 2018 Том 27, 2017 Том 26, 2016 Том 25, 2015 Том 24, 2014 Том 23, 2013 Том 22, 2012 Том 21, 2011 Том 20, 2010 Том 19, 2009 Том 18, 2008 Том 17, 2007 Том 16, 2006 Том 15, 2005 Том 14, 2004 Том 13, 2003 Том 12, 2002 Том 11, 2001 Том 10, 2000 Том 9, 1999 Том 8, 1998 Том 7, 1997 Том 6, 1996 Том 5, 1995 Том 4, 1994 Том 3, 1993 Том 2, 1992 Том 1, 1991

Atomization and Sprays

DOI: 10.1615/AtomizSpr.2011002806
pages 189-202

A NEW QUALITY METHODOLOGY AND METRICS FOR SPRAY PATTERN ANALYSIS

Ingo W. Scheer
ioos LLC
Claudia Beaumont
ioos LLC

Краткое описание

A new quality procedure and metrics for detecting quality problems in various applications, including medical device coating, spray drying, mass spectrometry, inhalation (drug delivery), heat transfer, and combustion, is presented. The novel spray characterization method facilitates the evaluation of data relating to spray surface area, spray density distribution, and/or mass distribution by visualizing deviations (spray errors) with respect to an ideal distribution in a two-dimensional plane. In this paper an optical patternation experiment was performed using a custom diagnostic system based on a 2D laser light sheet (Mie scattering) technique to control the quality of a series of air-assisted micronozzles for medical device coating. The novel spray error metrics were evaluated and compared to traditional quality measures such as the pattern index (P.I.). It was noted that the new spray error patternation methodology and error metrics SEt, SEo, and SEu provide a more informative indicator than conventional measures for detecting the spray quality. Besides the spray symmetry, the spray size and accurate location and type of spray density deviations are assessed. The results show that by obtaining quantitative information on spray density deviations, nozzle comparability is facilitated, and otherwise- "invisible" spray under-representation and/or over-representations are detected. A new insight into the spray characteristics of a series of micronozzles could be gained.