Доступ предоставлен для: Guest
Портал Begell Электронная Бибилиотека e-Книги Журналы Справочники и Сборники статей Коллекции
Atomization and Sprays
Импакт фактор: 1.737 5-летний Импакт фактор: 1.518 SJR: 0.814 SNIP: 1.18 CiteScore™: 2.2

ISSN Печать: 1044-5110
ISSN Онлайн: 1936-2684

Выпуски:
Том 30, 2020 Том 29, 2019 Том 28, 2018 Том 27, 2017 Том 26, 2016 Том 25, 2015 Том 24, 2014 Том 23, 2013 Том 22, 2012 Том 21, 2011 Том 20, 2010 Том 19, 2009 Том 18, 2008 Том 17, 2007 Том 16, 2006 Том 15, 2005 Том 14, 2004 Том 13, 2003 Том 12, 2002 Том 11, 2001 Том 10, 2000 Том 9, 1999 Том 8, 1998 Том 7, 1997 Том 6, 1996 Том 5, 1995 Том 4, 1994 Том 3, 1993 Том 2, 1992 Том 1, 1991

Atomization and Sprays

DOI: 10.1615/AtomizSpr.v19.i12.50
pages 1147-1169

PLANAR LIQUID SHEET BREAKUP OF PREFILMING AND NONPREFILMING ATOMIZERS AT ELEVATED PRESSURES

Umesh Bhayaraju
Institute of Propulsion Technology, German Aerospace Centre, Linder Höhe, 51147 Cologne
Christoph Hassa
German Aerospace Center−DLR, Institute of Propulsion Technology, Linder Hohe, 51147 Cologne, Germany

Краткое описание

Liquid sheet breakup of a prefilming and nonprefilming airblast atomizer is investigated experimentally at ambient temperatures and elevated pressures of air. The breakup is studied by high-speed flow visualization. The visualizations show the differences between both types of atomizers. For lower liquid loadings, the atomizer edge is always wetted in the prefilming case, whereas dry zones are observed for the nonprefilming injector. Different atomization regimes are observed for rising Weber numbers on the prefilmer: wavy sheet breakup below We = 100, surface stripping above 380, and a transition zone in between. The nonprefilming case always exhibits wavy sheet breakup, provided there is a sheet at the outlet, with the breakup length reducing to 0.5 mm above We 100. Liquid sheet thickness is characterized with side view images. Films that are thin compared to the edge thickness and are not composed of ligaments at the edge, wrap around the edge and therefore exhibit a storage mechanism. In the far field, drop sizes are characterized with a global Sauter mean diameter measured by phase Doppler anemometry. The measured drop sizes, influenced by primary and secondary atomization, show only small differences between the two types of atomizers. Correlations for the final drop size are obtained for both atomizer types for the conditions investigated.


Articles with similar content:

DEVELOPMENT OF AN AIR-BLAST ATOMIZER FOR INDEPENDENT CONTROL OF DROPLET SIZE AND SPRAY DENSITY
Atomization and Sprays, Vol.14, 2004, issue 3
C. P. Koshland, R. F. Sawyer, H. L. Clack, D. Lucas
MECHANISMS OF AIR-ASSISTED LIQUID ATOMIZATION
Atomization and Sprays, Vol.3, 1993, issue 1
Rolf D. Reitz, A. B. Liu
BREAKUP OF LIQUID DROPLETS IN ACCELERATED GAS FLOWS
Atomization and Sprays, Vol.13, 2003, issue 4
F. Schmelz, Peter Walzel
CHARACTERISTICS OF THE SPRAY PRODUCED BY THE ATOMIZATION OF AN ANNULAR LIQUID SHEET ASSISTED BY AN INNER GAS JET
Atomization and Sprays, Vol.22, 2012, issue 6
Nicolas Leboucher, Francis Roger, Jean-Louis Carreau
PRIMARY BREAKUP OF ROUND AERATED-LIQUID JETS IN SUPERSONIC CROSSFLOWS
Atomization and Sprays, Vol.16, 2006, issue 6
C. Aalburg, Thomas A. Jackson, G. M. Faeth, C. D. Carter, K.-C. Lin, Khaled A. Sallam