Доступ предоставлен для: Guest
Портал Begell Электронная Бибилиотека e-Книги Журналы Справочники и Сборники статей Коллекции
Atomization and Sprays
Импакт фактор: 1.737 5-летний Импакт фактор: 1.518 SJR: 0.814 SNIP: 1.18 CiteScore™: 2.2

ISSN Печать: 1044-5110
ISSN Онлайн: 1936-2684

Выпуски:
Том 30, 2020 Том 29, 2019 Том 28, 2018 Том 27, 2017 Том 26, 2016 Том 25, 2015 Том 24, 2014 Том 23, 2013 Том 22, 2012 Том 21, 2011 Том 20, 2010 Том 19, 2009 Том 18, 2008 Том 17, 2007 Том 16, 2006 Том 15, 2005 Том 14, 2004 Том 13, 2003 Том 12, 2002 Том 11, 2001 Том 10, 2000 Том 9, 1999 Том 8, 1998 Том 7, 1997 Том 6, 1996 Том 5, 1995 Том 4, 1994 Том 3, 1993 Том 2, 1992 Том 1, 1991

Atomization and Sprays

DOI: 10.1615/AtomizSpr.2011003894
pages 447-465

QUANTITATIVE ANALYSES OF FUEL SPRAY-AMBIENT GAS INTERACTION BY MEANS OF LIF-PIV TECHNIQUE

Jingyu Zhu
Mazda Motor Corporation, 3-1 Shinchi, Fuchu-cho, Aki-gun, Hiroshima 730-8670, Japan
Keiya Nishida
Department of Mechanical System Engineering, University of Hiroshima, 1-4-1 Kagamiyama, Higashi-Hiroshima, Hiroshima 739-8527, Japan
Olawole Abiola Kuti
Department of Mechanical System Engineering, Hiroshima University, 1-4-1 Kagamiyama, Higashi Hiroshima 739-8527, Japan
Seoksu Moon
Department of Mechanical Engineering, Inha University

Краткое описание

The in-cylinder fuel-ambient gas mixing property in a direct injection (D.I.) diesel engine significantly influences the ensuing combustion and exhaust emission performance. In this study, the interaction of nonevaporating diesel spray with the surrounding gas was analyzed quantitatively in the quiescent condition at room temperature and with ambient gas pressure of 1 MPa by means of the laser induced fluorescence-particle image velocimetry (LIF-PIV) technique. Particularly, this study focused on the calculation of gas mass flow rate entrained through the entire spray region (spray side periphery and tip region) and total entrained gas-fuel ratio by using the gas velocity data obtained by the LIF-PIV technique. Another focus of this study was the gas entrainment characteristics of diesel spray under a wide range of injection pressures (100, 200, and 300 MPa) and the micro-hole nozzle (0.08mm) condition. The results indicate that the entrained gas mass flow rate at the spray tip region is prominent in the whole periphery and the proportion of gas entrainment at the side surface region increases as the spray develops Higher injection pressure significantly enhances the total entrained gas mass; however the increase of ambient gas/fuel mass ratio becomes moderate gradually as the injection pressure increases. The calculation model proposed by this work is capable of illustrating the ambient gas flow characteristics of the diesel spray accurately.


Articles with similar content:

EXPERIMENTAL STUDY ON FLOW FIELDS OF FUEL DROPLETS AND AMBIENT GAS OF DIESEL SPRAY-FREE SPRAY AND FLAT-WALL IMPINGING SPRAY
Atomization and Sprays, Vol.24, 2014, issue 7
Takumi Uemura, Keiya Nishida, Jingyu Zhu
EXPERIMENTAL STUDY ON SPRAY ANGLE AND VELOCITY DISTRIBUTION OF DIESEL SPRAY UNDER HIGH AMBIENT PRESSURE CONDITIONS
Atomization and Sprays, Vol.21, 2011, issue 12
Masataka Arai, Yoshio Zama, Wataru Ochiai, Tomohiko Furuhata
EFFECT OF INJECTION STRATEGY ON THE SPRAY DEVELOPMENT PROCESS IN A SINGLE-CYLINDER OPTICAL GDI ENGINE
Atomization and Sprays, Vol.25, 2015, issue 9
Sungwook Park, Jingeun Song
ENTRAINMENT BY EFFERVESCENT SPRAYS AT LOW MASS FLOW RATES
ICLASS 94
Proceedings of the Sixth International Conference on Liquid Atomization and Spray Systems, Vol.0, 1994, issue
Paul E. Sojka, S. G. Bush
EFFECT OF RECESS ON MIXING AND ATOMIZATION CHARACTERISTICS OF LIQUID-LIQUID SWIRL COAXIAL INJECTORS
Atomization and Sprays, Vol.20, 2010, issue 1
Poonggyoo Han, Sunghyuk Kim, Youngbin Yoon, Dongjun Kim