Доступ предоставлен для: Guest
Atomization and Sprays
Editor-in-Chief Europe: Günter Brenn (open in a new tab)
Editor-in-Chief Americas: Marcus Herrmann (open in a new tab)
Редактор-основатель: Norman Chigier (open in a new tab)

Выходит 12 номеров в год

ISSN Печать: 1044-5110

ISSN Онлайн: 1936-2684

The Impact Factor measures the average number of citations received in a particular year by papers published in the journal during the two preceding years. 2017 Journal Citation Reports (Clarivate Analytics, 2018) IF: 1.2 To calculate the five year Impact Factor, citations are counted in 2017 to the previous five years and divided by the source items published in the previous five years. 2017 Journal Citation Reports (Clarivate Analytics, 2018) 5-Year IF: 1.8 The Immediacy Index is the average number of times an article is cited in the year it is published. The journal Immediacy Index indicates how quickly articles in a journal are cited. Immediacy Index: 0.3 The Eigenfactor score, developed by Jevin West and Carl Bergstrom at the University of Washington, is a rating of the total importance of a scientific journal. Journals are rated according to the number of incoming citations, with citations from highly ranked journals weighted to make a larger contribution to the eigenfactor than those from poorly ranked journals. Eigenfactor: 0.00095 The Journal Citation Indicator (JCI) is a single measurement of the field-normalized citation impact of journals in the Web of Science Core Collection across disciplines. The key words here are that the metric is normalized and cross-disciplinary. JCI: 0.28 SJR: 0.341 SNIP: 0.536 CiteScore™:: 1.9 H-Index: 57

Indexed in

NUMERICAL SIMULATION OF EVAPORATION AND DEFORMATION OF A SINGLE N-HEPTANE DROPLET UNDER FORCED CONVECTIVE CONDITION

Том 28, Выпуск 12, 2018, pp. 1101-1122
DOI: 10.1615/AtomizSpr.2019027077
Get accessGet access

Краткое описание

A numerical model for the evaporation and deformation of droplets is presented and validated against the experimental data under various temperature conditions. The model is based on a standard multiphase flow solver in OpenFOAM, and the Volume of Fluid method with surface compression is used to capture the interface. In contrast to the original solver, the energy and concentration equations are additionally solved; beyond that, an algorithm with parallel computing ability is developed to compute the evaporation source term by using the local vapor concentration gradient. Detailed numerical simulations are performed for a single n-heptane droplet under forced convective condition. Investigations of flow variables in both gaseous and liquid phases are presented. Finally, the effects of free stream temperature, Reynolds number, and deformation on the droplet evaporation are discussed.

Ключевые слова: droplet, evaporation, deformation, VOF method
ЦИТИРОВАНО В
  1. Jin Zi-Cheng, Sun Feng-Xian, Xia Xin-Lin, Sun Chuang, Numerical investigation of evaporation and radiation absorption of a non-spherical water droplet under asymmetrically radiative heating, International Journal of Heat and Mass Transfer, 140, 2019. Crossref

Портал Begell Электронная Бибилиотека e-Книги Журналы Справочники и Сборники статей Коллекции Цены и условия подписки Begell House Контакты Language English 中文 Русский Português German French Spain