Доступ предоставлен для: Guest
Портал Begell Электронная Бибилиотека e-Книги Журналы Справочники и Сборники статей Коллекции
Atomization and Sprays
Импакт фактор: 1.737 5-летний Импакт фактор: 1.518 SJR: 0.814 SNIP: 1.18 CiteScore™: 2.2

ISSN Печать: 1044-5110
ISSN Онлайн: 1936-2684

Выпуски:
Том 30, 2020 Том 29, 2019 Том 28, 2018 Том 27, 2017 Том 26, 2016 Том 25, 2015 Том 24, 2014 Том 23, 2013 Том 22, 2012 Том 21, 2011 Том 20, 2010 Том 19, 2009 Том 18, 2008 Том 17, 2007 Том 16, 2006 Том 15, 2005 Том 14, 2004 Том 13, 2003 Том 12, 2002 Том 11, 2001 Том 10, 2000 Том 9, 1999 Том 8, 1998 Том 7, 1997 Том 6, 1996 Том 5, 1995 Том 4, 1994 Том 3, 1993 Том 2, 1992 Том 1, 1991

Atomization and Sprays

DOI: 10.1615/AtomizSpr.v16.i5.20
pages 493-510

CHARACTERISTICS OF TRANSIENT, SWIRL-GENERATED, HOLLOW-CONE SPRAYS

Julian T. Kashdan
I.F.P., Rueil-Malmaison, France
John S. Shrimpton
Energy Technology Research Group, School of Engineering Sciences, University of Southampton, United Kingdom, SO171BJ

Краткое описание

The near-nozzle, global, spatial, and temporal characteristics of a hollow-cone spray produced by a pressure swirl-type atomizer have been investigated experimentally. Particular attention is given to the transient phase just after needle opening, which, for pulsed or intermittent atomizers, plays an all-important role in defining the global spray behavior and, more significantly, atomization quality. Qualitative and quantitative spray measurements have been achieved via the combined diagnostic techniques of high-magnification charge-coupled device (CCD) imaging and phase Doppler anemometry (PDA), which provides useful data not only in terms of improving the design and performance of pressure swirl atomizers, but also for the validation and refinement of numerical spray models. High-magnification CCD images of the intact near-nozzle liquid sheet reveal a certain degree of helical swirl motion, although laser Doppler velocimetry (LDV) results indicate that the tangential swirl motion imparted on the liquid sheet decays rapidly within the first few millimeters of the atomizer orifice to near-negligible levels. Images of the poorly atomized “preswirl spray” formed during the early transient phase of injection also revealed the presence of large, nonspherical liquid masses up to 1 mm in size, even as far as 72 nozzle diameters downstream. The spray-induced gas phase flow, which results in the characteristic toroidal vortex, was found to have a significant influence on droplet trajectories and segregation of the fast-moving large (D32 between 25 and 30 μm) and small (1−5 μm) droplets within the spray. Estimates of characteristic droplet Weber numbers have also been made, which, in general, were found to be less than the critical values required for secondary droplet breakup to occur.


Articles with similar content:

THE BREAKUP ZONE OF A DIESEL SPRAY: PART 1, LENGTH OF ZONE AND VOLUME OF UNATOMIZED LIQUID
Atomization and Sprays, Vol.5, 1995, issue 2
D. G. Salters, Andrew J. Yule
EFFECT OF THE LIQUID INJECTION ANGLE ON THE ATOMIZATION OF LIQUID JETS IN SUBSONIC CROSSFLOWS
Atomization and Sprays, Vol.24, 2014, issue 1
H. Almeida, J. M. M. Sousa, Mário Costa
INFLUENCE OF VORTEX FLOW AND CAVITATION ON NEAR-NOZZLE DIESEL SPRAY DISPERSION ANGLE
Atomization and Sprays, Vol.19, 2009, issue 3
Manolis Gavaises, A. Andriotis
LARGE EDDY SIMULATION OF DROPLET STOKES NUMBER EFFECTS ON MIXTURE QUALITY IN FUEL SPRAYS
Atomization and Sprays, Vol.20, 2010, issue 5
Harri Hillamo, Martti Larmi, M. Nuutinen, Ossi Kaario, Laszlo Fuchs, Ville Vuorinen
DROP-SIZE MEASUREMENT TECHNIQUES APPLIED TO GASOLINE SPRAYS
Atomization and Sprays, Vol.20, 2010, issue 2
Jean-Bernard Blaisot, Nicolas Fdida, Alain Floch, David Dechaume