Доступ предоставлен для: Guest
Портал Begell Электронная Бибилиотека e-Книги Журналы Справочники и Сборники статей Коллекции
Atomization and Sprays
Импакт фактор: 1.737 5-летний Импакт фактор: 1.518 SJR: 0.814 SNIP: 1.18 CiteScore™: 2.2

ISSN Печать: 1044-5110
ISSN Онлайн: 1936-2684

Выпуски:
Том 30, 2020 Том 29, 2019 Том 28, 2018 Том 27, 2017 Том 26, 2016 Том 25, 2015 Том 24, 2014 Том 23, 2013 Том 22, 2012 Том 21, 2011 Том 20, 2010 Том 19, 2009 Том 18, 2008 Том 17, 2007 Том 16, 2006 Том 15, 2005 Том 14, 2004 Том 13, 2003 Том 12, 2002 Том 11, 2001 Том 10, 2000 Том 9, 1999 Том 8, 1998 Том 7, 1997 Том 6, 1996 Том 5, 1995 Том 4, 1994 Том 3, 1993 Том 2, 1992 Том 1, 1991

Atomization and Sprays

DOI: 10.1615/AtomizSpr.2019028797
pages 1029-1059

X-RAY IMAGING TECHNIQUES TO QUANTIFY SPRAY CHARACTERISTICS IN THE NEAR FIELD

Theodore (Ted) Heindel
Iowa State University

Краткое описание

Liquid sprays play a key role in many engineering processes, including, but not limited to, food processing, coating and painting, 3D printing, fire suppression, agricultural production, and combustion systems. Spray characteristics can easily be assessed in the mid- and far-field regions, well after liquid sheet breakup and droplet formation, using various optical and/or laser diagnostic techniques. The conditions in the near-field region influence mid- and far-field characteristics; however, near-field measurements are extremely challenging because the spray in this region is typically optically dense where optical and laser diagnostics are generally ineffective. This paper provides an overview of the various X-ray imaging techniques that can be used to characterize the near-field region of a spray. X-rays produced with tube sources as well as synchrotron sources will be discussed. Using tube-source X-rays, 2D radiographic videos are possible showing qualitative spray information. The 2D radiographs can also provide quantitative measurements of the optical depth (OD) in the near-field region. Tube sources can also provide X-ray computed tomography imaging that can produce time-average 3D density (mass distribution) maps of the spray. X-rays from synchrotron radiation provide a high-flux X-ray beam that can be used to provide high spatial and temporal resolution of the spray equivalent path length (EPL) as well as other characteristics, but it is more challenging to implement than using a common tube source. Various examples of these X-ray imaging techniques will be discussed.


Articles with similar content:

AN EXPERIMENTAL STUDY ON MICROSCOPIC CHARACTERISTICS OF FLASH BOILING SPRAY WITH EXTENDED GLARE POINT VELOCIMETRY AND SIZING
Atomization and Sprays, Vol.26, 2016, issue 5
Shenghua Yang, Ming Jia, Zhuo Yao, Shiquan Shen, Tianyou Wang
THE EFFECT OF NOZZLE ELECTRIFICATION ON SPRAY FORMATION FROM AN AIRBLAST ATOMIZER
4th Thermal and Fluids Engineering Conference, Vol.32, 2019, issue
Theodore (Ted) Heindel, Timothy B. Morgan, Nathanaël Machicoane, Danyu Li, Alan L. Kastengren, Julie K. Bothell, Katarzyna E. Matusik, Thomas J. Burtnett, Alberto Aliseda
ASSESSMENT OF ATOMIZATION MODELS FOR DIESEL ENGINE SIMULATIONS
Atomization and Sprays, Vol.19, 2009, issue 9
S. Som, Suresh Aggarwal
VIEWS ON THE STRUCTURE OF TRANSIENT DIESEL SPRAYS
Atomization and Sprays, Vol.10, 2000, issue 3-5
Gregory J. Smallwood, Omer L. Gulder
DROPLET SIZE AND VELOCITY MEASUREMENTS IN A SPRAY
ICLASS 94
Proceedings of the Sixth International Conference on Liquid Atomization and Spray Systems, Vol.0, 1994, issue
M. A. Coil, Patrick V. Farrell