Доступ предоставлен для: Guest
Портал Begell Электронная Бибилиотека e-Книги Журналы Справочники и Сборники статей Коллекции
Atomization and Sprays
Импакт фактор: 1.737 5-летний Импакт фактор: 1.518 SJR: 0.814 SNIP: 1.18 CiteScore™: 2.2

ISSN Печать: 1044-5110
ISSN Онлайн: 1936-2684

Выпуски:
Том 30, 2020 Том 29, 2019 Том 28, 2018 Том 27, 2017 Том 26, 2016 Том 25, 2015 Том 24, 2014 Том 23, 2013 Том 22, 2012 Том 21, 2011 Том 20, 2010 Том 19, 2009 Том 18, 2008 Том 17, 2007 Том 16, 2006 Том 15, 2005 Том 14, 2004 Том 13, 2003 Том 12, 2002 Том 11, 2001 Том 10, 2000 Том 9, 1999 Том 8, 1998 Том 7, 1997 Том 6, 1996 Том 5, 1995 Том 4, 1994 Том 3, 1993 Том 2, 1992 Том 1, 1991

Atomization and Sprays

DOI: 10.1615/AtomizSpr.v20.i4.60
pages 345-364

COMBINED SPRAY MODEL FOR GASOLINE DIRECT INJECTION HOLLOW-CONE SPRAYS

Philipp Pischke
Institute of Heat and Mass Transfer, RWTH Aachen University, Augustinerbach 6, 52062 Aachen, Germany
D. Martin
Institute of Heat and Mass Transfer, RWTH Aachen University, Eilfschornsteinstr. 18, 52062 Aachen, Germany
Reinhold Kneer
Institute of Heat and Mass Transfer, RWTH Aachen University, Augustinerbach 6, 52062 Aachen, Germany

Краткое описание

Piezoinjectors with outwardly opening nozzles are the latest generation of high-pressure injectors for gasoline direct injection (GDI). In this study, a combined Eulerian-Lagrangian spray model is presented, which is based on user-defined implementations of all key models within a Fluent framework. Primary and secondary breakup is modeled with a combined LISA-KH-TAB approach. The LISA primary breakup model is extended by a one-dimensional model of the nozzle flow and by modified momentum source terms that lead to a more reasonable prediction of the near-nozzle continuous phase flow field. The KH and TAB secondary breakup models are applied to high and low Weber number secondary breakup, respectively. The collision model implemented accounts for all relevant collision regimes (i.e., coalescence, stretching separation, reflexive separation, and bouncing). For the bouncing and reflexive separation regimes, the momentum equations are modified because the standard equations cannot predict the trajectories after off-center collisions of differently sized droplets. Vaporization is modeled with a single-component model, which employs an analytical solution of the coupled heat and mass transfer equations. The combined model is validated with light scattering visualization and light sheet measurements, phase-doppler anemometry (PDA), and laser correlation velocimetry (LCV) at pressurized vaporizing- and nonvaporizing conditions. The validation indicates a good agreement of both macroscopic and microscopic properties, such as the spray geometry, vortex positions, or drop size distributions.


Articles with similar content:

EXPERIMENTAL AND NUMERICAL ANALYSIS OF SPRAY DISPERSION AND EVAPORATION IN A COMBUSTION CHAMBER
Atomization and Sprays, Vol.19, 2009, issue 10
Andreas Dreizler, Johannes Janicka, Amsini Sadiki, M. Hage, Mouldi Chrigui
OPTIMIZATION OF BREAKUP MODEL USING LES OF DIESEL SPRAY
Atomization and Sprays, Vol.22, 2012, issue 1
Tsukasa Hori, Jiro Senda, Koji Kitaguchi, Soichi Hatori
MODELING THE EFFECTS OF GAS DENSITY ON THE DROP TRAJECTORY AND BREAKUP SIZE OF HIGH-SPEED LIQUID DROPS
Atomization and Sprays, Vol.9, 1999, issue 5
Rolf D. Reitz, C. H. Lee
A NOVEL SPRAY MODEL VALIDATION METHODOLOGY USING LIQUID-PHASE EXTINCTION MEASUREMENTS
Atomization and Sprays, Vol.25, 2015, issue 5
Gina M. Magnotti, Caroline L. Genzale
UNSTEADY INJECTION OF SEQUENCES OF DROP CLUSTERS IN VORTICES DEPICTING PORTIONS OF A SPRAY
ICLASS 94
Proceedings of the Sixth International Conference on Liquid Atomization and Spray Systems, Vol.0, 1994, issue
Josette Bellan, K. Harstad