Доступ предоставлен для: Guest
Портал Begell Электронная Бибилиотека e-Книги Журналы Справочники и Сборники статей Коллекции
International Journal for Multiscale Computational Engineering
Импакт фактор: 1.016 5-летний Импакт фактор: 1.194 SJR: 0.554 SNIP: 0.68 CiteScore™: 1.18

ISSN Печать: 1543-1649
ISSN Онлайн: 1940-4352

Том 17, 2019 Том 16, 2018 Том 15, 2017 Том 14, 2016 Том 13, 2015 Том 12, 2014 Том 11, 2013 Том 10, 2012 Том 9, 2011 Том 8, 2010 Том 7, 2009 Том 6, 2008 Том 5, 2007 Том 4, 2006 Том 3, 2005 Том 2, 2004 Том 1, 2003

International Journal for Multiscale Computational Engineering

DOI: 10.1615/IntJMultCompEng.v1.i23.50
20 pages

A Generalized Recursive Coordinate Reduction Method for Multibody System Dynamics

J. H. Critchley
Department of Mechanical, Aeronautical, and Nuclear Engineering, Rensselaer Polytechnic Institute, Troy, New York, USA
Kurt S. Anderson
Rensselaer Polytechnic Institute, USA

Краткое описание

The method of recursive coordinate reduction (RCR) offers solutions to the forward problem of multibody dynamics at a cost in which the number of operations is linear in both the number of generalized coordinates, n, and the number of independent algebraic constraints, m (e.g., O(n + m)). However, the RCR is presently restricted in applicability (albeit broad) and susceptible to formulation singularities. This article develops two methods for avoiding formulation singularities as well as a recursive general coupled loop solution that extends the RCR to the complete set of multibody systems. Application of these techniques are further illustrated with a special five-bar linkage. The existing RCR coupled with these developments constitute a generalized recursive coordinate reduction method that should be used in place of the traditional "O(n)" constraint technique (truly O(n + nm2 + m3)) for superior O(n + m) computational performance.