Доступ предоставлен для: Guest
Портал Begell Электронная Бибилиотека e-Книги Журналы Справочники и Сборники статей Коллекции
International Journal for Multiscale Computational Engineering
Импакт фактор: 1.016 5-летний Импакт фактор: 1.194 SJR: 0.554 SNIP: 0.68 CiteScore™: 1.18

ISSN Печать: 1543-1649
ISSN Онлайн: 1940-4352

Выпуски:
Том 17, 2019 Том 16, 2018 Том 15, 2017 Том 14, 2016 Том 13, 2015 Том 12, 2014 Том 11, 2013 Том 10, 2012 Том 9, 2011 Том 8, 2010 Том 7, 2009 Том 6, 2008 Том 5, 2007 Том 4, 2006 Том 3, 2005 Том 2, 2004 Том 1, 2003

International Journal for Multiscale Computational Engineering

DOI: 10.1615/IntJMultCompEng.v6.i4.20
pages 299-307

Analytical Estimates of the Subgrid Model for Burgers Equation: Ramifications for Spectral Methods for Conservation Laws

Assad A. Oberai
Department of Mechanical Aerospace and Nuclear Engineering, Rensselaer Polytechnic Institute, USA
Carlos E. Colosqui
Department of Aerospace and Mechanical Engineering, Boston University, Boston, MA 02215, USA
John Wanderer
Department of Aerospace and Mechanical Engineering, Boston University, Boston, MA 02215, USA

Краткое описание

In several numerical methods used for simulating an inviscid, or nearly inviscid, nonlinear conservation law, a wavenumber-dependent viscosity is often employed as a subgrid model. In particular, in the spectral vanishing viscosity and hyperviscosity methods, the viscosity at low wavenumbers is set to zero. In this note, we verify whether this choice is consistent with the wavenumber dependence of the energy transfer to the subgrid scales. We evaluate this transfer for different choices of a desired numerical solution that are made precise by the choice of a restriction operator. We discover that, for the simple model system of Burgers equation, the exact subgrid viscosity is nonzero at low wavenumbers and, hence, the spectral vanishing viscosity and hyperviscosity methods are at odds with the exact subgrid model. We also observe that the exact subgrid viscosity is well described by a nonzero plateau at low wavenumbers, a cusp at the high wavenumbers, and is remarkably similar to the wavenumber-dependent viscosity observed in three-dimensional turbulence. We attribute this similarity to the locality of energy transfer in wavenumber space in both of these systems.


Articles with similar content:

Robo-Linked Purcell's Swimmer
International Journal of Fluid Mechanics Research, Vol.38, 2011, issue 6
M. Siva Kumar, P. Philominathan
DIMENSIONALITY REDUCTION FOR COMPLEX MODELS VIA BAYESIAN COMPRESSIVE SENSING
International Journal for Uncertainty Quantification, Vol.4, 2014, issue 1
Bert J. Debusschere, Habib N. Najm, Peter Thornton, Cosmin Safta, Khachik Sargsyan, Daniel Ricciuto
RECENT DEVELOPMENTS IN MODELING THE INFRARED RADIATIVE PROPERTIES OF HOT GASES
International Heat Transfer Conference 11, Vol.1, 1998, issue
Marie-Yvonne Perrin, Jean Taine, Philippe Riviere, Anouar Soufiani
STATISTICAL SURROGATE MODELS FOR PREDICTION OF HIGH-CONSEQUENCE CLIMATE CHANGE
International Journal for Uncertainty Quantification, Vol.3, 2013, issue 4
Richard V. Field Jr., Paul Constantine, M. Boslough
On the reversibility of the compressible, inviscid, linearized Navier-Stokes equations: Implications for numerical schemes
ICHMT DIGITAL LIBRARY ONLINE, Vol.0, 2015, issue
Rebecca L. Bertsch, Sharath S. Girimaji