Доступ предоставлен для: Guest
Портал Begell Электронная Бибилиотека e-Книги Журналы Справочники и Сборники статей Коллекции
International Journal for Multiscale Computational Engineering
Импакт фактор: 1.016 5-летний Импакт фактор: 1.194 SJR: 0.554 SNIP: 0.68 CiteScore™: 1.18

ISSN Печать: 1543-1649
ISSN Онлайн: 1940-4352

Выпуски:
Том 17, 2019 Том 16, 2018 Том 15, 2017 Том 14, 2016 Том 13, 2015 Том 12, 2014 Том 11, 2013 Том 10, 2012 Том 9, 2011 Том 8, 2010 Том 7, 2009 Том 6, 2008 Том 5, 2007 Том 4, 2006 Том 3, 2005 Том 2, 2004 Том 1, 2003

International Journal for Multiscale Computational Engineering

DOI: 10.1615/IntJMultCompEng.v3.i1.30
pages 33-48

Multiscale Electrochemistry Modeling of Solid Oxide Fuel Cells

M. A. Khaleel
Computational Science and Mathematics Division, Pacific Northwest National Laboratory, P.O. Box 999, Richland, WA 99352
D. R. Rector
Computational Science and Mathematics Division, Pacific Northwest National Laboratory, P.O. Box 999, Richland, WA 99352
Z. Lin
Computational Science and Mathematics Division, Pacific Northwest National Laboratory, P.O. Box 999, Richland, WA 99352
K. Johnson
Computational Science and Mathematics Division, Pacific Northwest National Laboratory, P.O. Box 999, Richland, WA 99352
K. Recknagle
Computational Science and Mathematics Division, Pacific Northwest National Laboratory, P.O. Box 999, Richland, WA 99352

Краткое описание

In this paper, we present two levels of electrochemical modeling for solid oxide fuel cells: cell continuum and microscale electrochemistry. The microscale electrochemistry model simulates the performance of porous electrode materials based on the microstructure of the material, the distribution of reaction surfaces, and the transport of oxygen ions through the material. The overall fuel cell current-voltage relations are obtained using the microscale electrochemistry modeling and form the basic input to the continuum level electrochemistry model. The continuum electrochemistry model calculates the current electrical density, cell voltage, and heat production in fuel cell stacks with H2 or other fuels, taking into account as inputs local values of the gas partial pressures and temperatures. This approach is based on a parameterized current-voltage (I-V) relation and includes the heat generation from both Joule heating and chemical reactions. It also accounts for species production and destruction via mass balance. The continuum electrochemistry model is then coupled with a flow-thermal-mechanical simulation framework for fuel cell stack design and optimizing operating conditions.


Articles with similar content:

Effect of Heat and Mass Transfer and Electrochemistry on Performance in Solid Oxide Fuel Cell Stacks
International Heat Transfer Conference 15, Vol.17, 2014, issue
Jon. G. Pharoah, Robert T. Nishida, Steven B. Beale
A CASE STUDY OF USING ENHANCED INTERCONNECT CHANNEL GEOMETRIES ON HEAT AND MASS TRANSFER CHARACTERISTICS OF ANODE-SUPPORTED PLANAR SOFC
Journal of Enhanced Heat Transfer, Vol.22, 2015, issue 2
Raj M. Manglik, Yogesh N. Magar
NUMERICAL INVESTIGATION OF SPECIES DISTRIBUTION AND THE ANODE TRANSFER COEFFICIENT EFFECT ON THE PROTON EXCHANGE MEMBRANE FUEL CELL (PEMFC) PERFORMANCE
Heat Transfer Research, Vol.46, 2015, issue 10
Sajad Rezazadeh, Vahid Ahmadpour, Nima Ahmadi
EFFECT OF OPERATING CONDITIONS ON PERFORMANCE OF A PROTON EXCHANGE MEMBRANE FUEL CELL (PEMFC)
ICHMT DIGITAL LIBRARY ONLINE, Vol.0, 2012, issue
Ziari Yasmina Kerboua , Youcef Kerkoub , Ahmed Benzaoui
Multiscale Modeling Approaches of Transport Phenomena in Fuel Cells
International Heat Transfer Conference 15, Vol.1, 2014, issue
Bengt Sunden