Доступ предоставлен для: Guest
International Journal for Multiscale Computational Engineering

Выходит 6 номеров в год

ISSN Печать: 1543-1649

ISSN Онлайн: 1940-4352

The Impact Factor measures the average number of citations received in a particular year by papers published in the journal during the two preceding years. 2017 Journal Citation Reports (Clarivate Analytics, 2018) IF: 1.4 To calculate the five year Impact Factor, citations are counted in 2017 to the previous five years and divided by the source items published in the previous five years. 2017 Journal Citation Reports (Clarivate Analytics, 2018) 5-Year IF: 1.3 The Immediacy Index is the average number of times an article is cited in the year it is published. The journal Immediacy Index indicates how quickly articles in a journal are cited. Immediacy Index: 2.2 The Eigenfactor score, developed by Jevin West and Carl Bergstrom at the University of Washington, is a rating of the total importance of a scientific journal. Journals are rated according to the number of incoming citations, with citations from highly ranked journals weighted to make a larger contribution to the eigenfactor than those from poorly ranked journals. Eigenfactor: 0.00034 The Journal Citation Indicator (JCI) is a single measurement of the field-normalized citation impact of journals in the Web of Science Core Collection across disciplines. The key words here are that the metric is normalized and cross-disciplinary. JCI: 0.46 SJR: 0.333 SNIP: 0.606 CiteScore™:: 3.1 H-Index: 31

Indexed in

Multiscale Modeling of Solute Bulk Diffusion at Dislocation Cores

Том 7, Выпуск 5, 2009, pp. 475-485
DOI: 10.1615/IntJMultCompEng.v7.i5.80
Get accessGet access

Краткое описание

A sequential multiscale modeling methodology is developed to study the diffusion of solute atoms in the vicinity of a dislocation core and the kinetics of the ensuing clustering process. The problem is set up in the continuum sense, taking into account the coupling between diffusion and deformation. Specifically, gradients of both strain and concentration drive diffusion, and the elastic constants are considered functions of the local solute concentration. These coupling parameters are calibrated from atomistic models. The problem is solved using a finite element formulation. Mg clustering at an edge dislocation in Al-5%Mg is studied, which is relevant for static and dynamic strain aging. The model is used to test the validity of the Cottrell-Bilby-Louat expression, broadly used to describe the kinetics of solute clustering at dislocation cores. It is concluded that the formula does not predict the variation in time of the concentration at every point within the cluster, the purpose for which it is customarily used. However, it properly describes the evolution of a global measure of the cluster size.

ЛИТЕРАТУРА
  1. Nowacki, W., Dynamic problem of diffusion in solids. DOI: 10.1016/0013-7944(76)90091-6

  2. Aifantis, E. C., On the problems of diffusion in solids. DOI: 10.1007/BF01202949

  3. Larche, F. C., and Cahn, W. J., Effect of self-stress on diffusion in solids. DOI: 10.1016/0001-6160(82)90023-2

  4. Girrens, S. P., and Smith, F. W., Finite element analysis of coupled constituent diffusion in thermoelastic solids. DOI: 10.1016/0045-7825(87)90024-7

  5. Sofronis, P., The influence of mobility of dissolved hydrogen on the elastic response of a metal. DOI: 10.1016/0022-5096(95)00037-J

  6. Thomas, J. P., and Chopin, C. E., Modeling of coupled deformation-diffusion in non-porous solids. DOI: 10.1016/S0020-7225(98)00029-9

  7. Weitsman, Y., Stress assisted diffusion in elastic and viscoelastic materials. DOI: 10.1016/0022-5096(87)90029-9

  8. Lufrano, J., Sofronis, P., and Birnbaum, H. K., Modeling of hydrogen transport and elastically accommodated hydride formation near a crack tip. DOI: 10.1016/0022-5096(95)00075-5

  9. Zhang, D., and Picu, R. C., Solute clustering in Al-Mg binary alloys. DOI: 10.1088/0965-0393/12/1/011

  10. Picu, R. C., and Zhang, D., Atomistic study of pipe diffusion in Al-Mg alloys. DOI: 10.1016/j.actamat.2003.09.002

  11. Picu, R. C., and Xu, Z., Vacancy concentration in Al-Mg solid solutions. DOI: 10.1016/j.scriptamat.2007.03.014

  12. Picu, R. C., Vincze, G., Ozturk, F., Gracio, J. J., Barlat, F., and Maniatty, A., Strain rate sensitivity of the commercial aluminum alloy AA5182-O. DOI: 10.1016/j.msea.2004.08.029

  13. Liu, X.-Y., Ohotnicky, P. P., Adams, J. B., Rohrer, C. L., and Hyland, R. W., Anisotropic surface segregation in Al-Mg alloys. DOI: 10.1016/S0039-6028(96)01154-5

  14. Liu, X.-Y., and Adams, J. B., Grain-boundary segregation in Al-10%Mg alloys at hot working temperatures. DOI: 10.1016/S1359-6454(98)00038-X

  15. Namilae, S., Chandra, N., and Nieh, T. G., Atomistic simulation of grain boundary sliding in pure and magnesium doped aluminum bicrystals. DOI: 10.1016/S1359-6462(01)01195-2

  16. Slabanja, M., and Wahnström, G., Kinetic Monte Carlo study of Al-Mg precipitation. DOI: 10.1016/j.actamat.2005.04.024

  17. Olmsted, D. L., Hector, L. G., and Curtin,W. A., Molecular dynamics study of solute strengthening in Al/Mg alloys. DOI: 10.1016/j.jmps.2005.12.008

  18. Abaqus Analysis User’s Manual.

  19. Abaqus User Subroutines Reference Manual.

  20. Zienkiewicz, O. C., and Zhu, J. Z., Superconvergent patch recovery and a posteriori error estimates. Part 1: The recovery technique. DOI: 10.1002/nme.1620330702

  21. Curtin, W. A., Olmsted, D. L., and Hector, L. G., A predictive mechanism for dynamic strain ageing in aluminium-magnesium alloys. DOI: 10.1038/nmat1765

  22. Xu, Z., and Picu, R. C., Dislocation-solute cluster interaction in Al-Mg binary alloys. DOI: 10.1088/0965-0393/14/2/005

ЦИТИРОВАНО В
  1. Dontsova E., Rottler J., Sinclair C. W., Solute-defect interactions in Al-Mg alloys from diffusive variational Gaussian calculations, Physical Review B, 90, 17, 2014. Crossref

Портал Begell Электронная Бибилиотека e-Книги Журналы Справочники и Сборники статей Коллекции Цены и условия подписки Begell House Контакты Language English 中文 Русский Português German French Spain