Доступ предоставлен для: Guest
Портал Begell Электронная Бибилиотека e-Книги Журналы Справочники и Сборники статей Коллекции
International Journal for Multiscale Computational Engineering
Импакт фактор: 1.016 5-летний Импакт фактор: 1.194 SJR: 0.554 SNIP: 0.82 CiteScore™: 2

ISSN Печать: 1543-1649
ISSN Онлайн: 1940-4352

Выпуски:
Том 18, 2020 Том 17, 2019 Том 16, 2018 Том 15, 2017 Том 14, 2016 Том 13, 2015 Том 12, 2014 Том 11, 2013 Том 10, 2012 Том 9, 2011 Том 8, 2010 Том 7, 2009 Том 6, 2008 Том 5, 2007 Том 4, 2006 Том 3, 2005 Том 2, 2004 Том 1, 2003

International Journal for Multiscale Computational Engineering

DOI: 10.1615/IntJMultCompEng.v2.i3.60
16 pages

A Non Split Projection Strategy for Low Mach Number Flows

P.P. Pebay
Sandia National Laboratories P.O. Box 969, M.S. 9051, Livermore, CA 94451
Habib Najm
Sandia National Laboratories
J. G. Pousin
National Institute for Applied Sciences, MAPLY U.M.R. CNRS 5585, Leonard de Vinci, 69621 Villeurbanne cedex, France

Краткое описание

In the context of the direct numerical simulation of low Mach number reacting flows, the aim of this article is to propose a new approach based on the integration of the original differential-algebraic equation (DAE) system of governing equations, without further differentiation. In order to do so while preserving a possibility of easy parallelization, it is proposed to use a one-step index 2 DAE time integrator, the Half Explicit Method (HEM). In this context, we recall why the low Mach number approximation belongs to the class of index 2 DAEs and discuss why the pressure can be associated with the constraint. We then focus on a fourth-order HEM scheme and provide a formulation that makes its implementation more convenient. Practical details about the consistency of initial conditions are discussed prior to focusing on the implicit solve involved in the method. The method is then evaluated using the Modified Kaps Problem, since it has some of the features of the low Mach number approximation. Numerical results are presented, confirming the validity of the strategy. A brief summary of ongoing efforts is finally provided.


Articles with similar content:

On the reversibility of the compressible, inviscid, linearized Navier-Stokes equations: Implications for numerical schemes
ICHMT DIGITAL LIBRARY ONLINE, Vol.0, 2015, issue
Rebecca L. Bertsch, Sharath S. Girimaji
HYPERSONIC FLOWS SIMULATION USING PARALLEL PROGRAM COMPLEX "EXPRESS-3D"
ICHMT DIGITAL LIBRARY ONLINE, Vol.0, 2017, issue
Tatiana G. Elizarova, Evgeny V. Shilnikov
An Analytic Solution of Water Transport in Unsaturated Porous Media
Journal of Porous Media, Vol.11, 2008, issue 6
M. Nasseri, Y. Daneshbod, M. R. Shaghaghian, H. Seyyedian
Parameter Identification for Discrete-Time Dynamic Systems by Use of Neural Network and Set-Membership Approaches
Journal of Automation and Information Sciences, Vol.32, 2000, issue 11
Nataliya N. Kussul
LOCALIZED RADIAL BASIS FUNCTIONS AND DIFFERENTIAL QUADRATURE-MESHLESS METHOD FOR SIMULATING COMPRESSIBLE FLOWS
Computational Thermal Sciences: An International Journal, Vol.11, 2019, issue 5
Ebrahim Nabizadeh, Darrell W. Pepper