Доступ предоставлен для: Guest
International Journal for Multiscale Computational Engineering

Выходит 6 номеров в год

ISSN Печать: 1543-1649

ISSN Онлайн: 1940-4352

The Impact Factor measures the average number of citations received in a particular year by papers published in the journal during the two preceding years. 2017 Journal Citation Reports (Clarivate Analytics, 2018) IF: 1.4 To calculate the five year Impact Factor, citations are counted in 2017 to the previous five years and divided by the source items published in the previous five years. 2017 Journal Citation Reports (Clarivate Analytics, 2018) 5-Year IF: 1.3 The Immediacy Index is the average number of times an article is cited in the year it is published. The journal Immediacy Index indicates how quickly articles in a journal are cited. Immediacy Index: 2.2 The Eigenfactor score, developed by Jevin West and Carl Bergstrom at the University of Washington, is a rating of the total importance of a scientific journal. Journals are rated according to the number of incoming citations, with citations from highly ranked journals weighted to make a larger contribution to the eigenfactor than those from poorly ranked journals. Eigenfactor: 0.00034 The Journal Citation Indicator (JCI) is a single measurement of the field-normalized citation impact of journals in the Web of Science Core Collection across disciplines. The key words here are that the metric is normalized and cross-disciplinary. JCI: 0.46 SJR: 0.333 SNIP: 0.606 CiteScore™:: 3.1 H-Index: 31

Indexed in

Random Packs and Their Use in Grain-Scale Modeling, with Applications to Energetic Materials

Том 8, Выпуск 5, 2010, pp. 473-487
DOI: 10.1615/IntJMultCompEng.v8.i5.40
Get accessGet access

Краткое описание

In recent years, we have constructed closely packed spheres using the Lubachevsky-Stillinger algorithm to generate models of heterogeneous solid propellants. Improvements to the algorithm now allow us to pack nonspherical shapes for modeling heterogeneity in complex energetic materials such as plastic-bonded explosives and pressed gun propellants. In this paper, we review the packing algorithm and present selected results, including higher-order statistics, along with preliminary results of convective burning through a porous medium.

Ключевые слова: random packs, energetic materials, convective burning
ЛИТЕРАТУРА
  1. Adams, D., Igniter performance in solid-propellant rocket motors. DOI: 10.2514/3.29012

  2. Alam, M. and Luding, S., Rheology of bidisperse granular mixtures via event-driven simulations. DOI: 10.1017/S002211200200263X

  3. Armstrong, R. and Elban, W., Materials science and technology aspects of energetic (explosive) materials. DOI: 10.1179/174328406X84049

  4. Asay, B., Son, S., and Bdzil, J., The role of gas permeation in convective burning. DOI: 10.1016/0301-9322(96)00041-9

  5. Aste, T., Saadatfar, M., Sakellariou, A., and Senden, T., Investigating the geometrical structure of disordered sphere packings. DOI: 10.1016/j.physa.2004.03.034

  6. Aste, T., Saadatfar, M., and Senden, T., Geometrical structure of disordered sphere packings. DOI: 10.1103/PhysRevE.71.061302

  7. Baer, M., Hall, C., Gustavsen, R., and Hooks, D., Isentropic loading experiments of a plastic bonded explosive and constituents. DOI: 10.1063/1.2399881

  8. Bdzil, J., Menikoff, R., Son, S., Kapila, A., and Stewart, D. S., Two-phase modeling of de agration-to-detonation transition in granular materials: A critical examination of modeling issues.

  9. Bernal, J. and Mason, J., Packing of spheres: Co-ordination of randomly packed spheres. DOI: 10.1038/188910a0

  10. Brent, R., Algorithms for Minimization without Derivatives.

  11. Carlucci, D. and Jacobson, S., Ballistics: Theory and Design of Guns and Ammunition.

  12. Collins, B., Reconstruction of statistically optimal periodic unit cells of multimodal particulate composites. DOI: 10.1016/j.commatsci.2007.07.043

  13. Davis, T., The Chemistry of Powder and Explosives.

  14. Davis, T. and Kuo, K., Experimental study of the combustion processes in granular propellant beds. DOI: 10.2514/3.57644

  15. Donev, A., Torquato, S., and Stillinger, F., Neighbor list collision-driven molecular dynamics simulation for nonspherical hard particles, II. Applications to ellipses and ellipsoids. DOI: 10.1016/j.jcp.2004.08.025

  16. Fedkiw, R., Aslam, T., Merriman, B., and Osher, S., A nonoscillatory eulerian approach to interfaces in multimaterial flows (the ghost fluid method). DOI: 10.1006/jcph.1999.6236

  17. Greatrix, D., Gottlieb, J., and Constantinou, T., Numerical model for pellet-dispersion igniter systems. DOI: 10.2514/3.23082

  18. Gruhn, T. and Monson, P., Isobaric molecular dynamics simulations of hard sphere systems. DOI: 10.1103/PhysRevE.63.061106

  19. Hill, R., Elastic properties of reinforced solids: Some theoretical principles. DOI: 10.1016/0022-5096(63)90036-X

  20. Hooke, R. and Jeeves, T., Direct search solution of numerical and statistical problems. DOI: 10.1145/321062.321069

  21. Hooks, D., Growth and characterization of explosive single crystals at los alamos national laboratory.

  22. Jackson, T., Buckmaster, J., Campbell, M., and Kochevets, S., The burning of 3D random-pack heterogeneous propellants.

  23. Jackson, T., Najjar, F., and Buckmaster, J., New aluminum agglomeration models and their use in solid-propellant-rocket simulations. DOI: 10.2514/1.11888

  24. Jia, X. and Williams, R., From microstructures of tablets and granules to their dissolution behaviour.

  25. Johansson, R., Thunman, H., and Leckner, B., Influence of intraparticle gradients in modeling of fixed bed combustion. DOI: 10.1016/j.combustflame.2006.12.009

  26. Keyser, M., Conradie, M., Coertzen, M., and Van Dyk, J., Effect of coal particle size distribution on packed bed pressure drop and gas flow distribution. DOI: 10.1016/j.fuel.2005.12.012

  27. Knott, G., Jackson, T., and Buckmaster, J., Random packing of heterogeneous propellants. DOI: 10.2514/2.1361

  28. Kumar, N., Matous, K., and Geubelle, P., Reconstruction of periodic unit cells of multimodal random particulate composites using genetic algorithms. DOI: 10.1016/j.commatsci.2007.07.043

  29. Kuo, K., Vichnevetsky, R., and Summerfield, M., Theory of flame front propagation in porous propellant charges under confinement. DOI: 10.2514/3.50486

  30. Lipton, R., Variational methods, bounds and size effects for twophase composites with coupled heat and mass transport processes at the two-phase interface.

  31. Lockmann, K., Oger, L., and Stoyan, D., Statistical analysis of random sphere packings with variable radius distribution. DOI: 10.1016/j.solidstatesciences.2006.07.011

  32. Macdonald, I., El-Sayed, M., Mow, K., and Dullien, F., Flow through porous media-the Ergun equation revisited. DOI: 10.1021/i160071a001

  33. Maggi, F., Stafford, S., Jackson, T., and Buckmaster, J., Nature of packs used in propellant modeling. DOI: 10.1103/PhysRevE.77.046107

  34. Man, W., Donev, A., Stillinger, F., and Sullivan, M., Experiments on random packings of ellipsoids. DOI: 10.1103/PhysRevLett.94.198001

  35. Massa, L., Jackson, T., and Short, M., Numerical solution of three-dimensional heterogeneous solid propellants. DOI: 10.1088/1364-7830/7/3/308

  36. Nelder, J. and Mead, R., A simplex method for function minimization. DOI: 10.1093/comjnl/7.4.308

  37. Press, W., Flannery, B., Teukolsky, S., and Vetterling, W., Numerical Recipes in C.

  38. Reaugh, J., Checking out the hot spots.

  39. Shepherd, J. and Begeal, D., Transient compressible flow in porous materials.

  40. Shu, C. and Osher, S., Efficient implementation of essentially non-oscillatory shock-capturing schemes. DOI: 10.1016/0021-9991(88)90177-5

  41. Smith, J., Van Ness, H., and Abbott, M., Introduction to Chemical Engineering Thermodynamics.

  42. Stafford, S., Random packs and their use in modeling high speed porous flow.

  43. Volkov, I., Cieplak, M., Koplik, J., and Banavar, J., Molecular dynamics simulations of crystallization of hard spheres. DOI: 10.1103/PhysRevE.66.061401

  44. Wackenhut, M., McNamara, S., and Herrmann, H., Shearing behavior of polydisperse media. DOI: 10.1140/epje/i2004-10144-7

  45. Wang, X., Buckmaster, J., and Jackson, T., Burning of ammonium- perchlorate ellipses and spheroids in fuel binder. DOI: 10.2514/1.15739

Портал Begell Электронная Бибилиотека e-Книги Журналы Справочники и Сборники статей Коллекции Цены и условия подписки Begell House Контакты Language English 中文 Русский Português German French Spain