Доступ предоставлен для: Guest
International Journal for Multiscale Computational Engineering

Выходит 6 номеров в год

ISSN Печать: 1543-1649

ISSN Онлайн: 1940-4352

The Impact Factor measures the average number of citations received in a particular year by papers published in the journal during the two preceding years. 2017 Journal Citation Reports (Clarivate Analytics, 2018) IF: 1.4 To calculate the five year Impact Factor, citations are counted in 2017 to the previous five years and divided by the source items published in the previous five years. 2017 Journal Citation Reports (Clarivate Analytics, 2018) 5-Year IF: 1.3 The Immediacy Index is the average number of times an article is cited in the year it is published. The journal Immediacy Index indicates how quickly articles in a journal are cited. Immediacy Index: 2.2 The Eigenfactor score, developed by Jevin West and Carl Bergstrom at the University of Washington, is a rating of the total importance of a scientific journal. Journals are rated according to the number of incoming citations, with citations from highly ranked journals weighted to make a larger contribution to the eigenfactor than those from poorly ranked journals. Eigenfactor: 0.00034 The Journal Citation Indicator (JCI) is a single measurement of the field-normalized citation impact of journals in the Web of Science Core Collection across disciplines. The key words here are that the metric is normalized and cross-disciplinary. JCI: 0.46 SJR: 0.333 SNIP: 0.606 CiteScore™:: 3.1 H-Index: 31

Indexed in

Calibration of Nanocrystal Grain Boundary Model Based on Polycrystal Plasticity Using Molecular Dynamics Simulations

Том 8, Выпуск 5, 2010, pp. 509-522
DOI: 10.1615/IntJMultCompEng.v8.i5.60
Get accessGet access

Краткое описание

Decohesion parameters are computed for the tilt grain boundaries through molecular simulations and the parameters are employed in a elastoplastic deformation model of a face-centered-cubic nanocrystal. The calibrated continuum grain boundary model accounts for reversible elastic and irreversible inelastic separation sliding deformations. The intragranular plasticity was modeled using a rate-independent single-crystal plasticity model. Atomistic calculations are presented for a planar, copper grain boundary interface with a tilt lattice misorientation for cases of loading and unloading. The interface models are deformed to full separation and then relaxed to study inelastic behavior. Plots of stress versus displacement show a distinctly different deformation response between normal and tangential interface loading conditions. Two-dimensional microstructures uniaxially loaded using the calibrated cohesive model indicate that the macroscopically observed nonlinearity in the mechanical response is mainly due to the inelastic response of the grain boundaries. Plastic deformation in the interior of the grains prior to the initiation of grain boundary cracks was not observed. Although key features of the molecular simulation results have been introduced in the cohesive model, a few discrepancies between the behavior of cohesive model when compared to molecular simulations are noted.

ЛИТЕРАТУРА
  1. Anand, L. and Kothari, M., A computational procedure for rateindependent crystal plasticity. DOI: 10.1016/0022-5096(96)00001-4

  2. Asaro, R. J., Krysl, P., and Kad, B., Deformation mechanism transitions in nanoscale fcc metals. DOI: 10.1080/09500830310001614540

  3. Camacho, G. T. and Ortiz, M., Adaptive Lagrangian modelling of ballistic penetration of metallic targets. DOI: 10.1016/S0045-7825(96)01134-6

  4. Cleri, F., Yip, S., Wolf, D., and Phillpot, S. R., Atomic-scale mechanism of crack-tip plasticity: Dislocation nucleation and crack-tip shielding. DOI: 10.1103/PhysRevLett.79.1309

  5. Cleri, F., Phillpot, S. R., Wolf, D., and Yip, S., Atomistic simulations of materials fracture and the link between atomic and continuum length scales. DOI: 10.1111/j.1151-2916.1998.tb02368.x

  6. Daw, M. S., Foiles, S. M., and Baskes, M. I., The embedded atom method: A review of theory and applications. DOI: 10.1016/0920-2307(93)90001-U

  7. Fu, H.-H., Benson, D. J., and Meyers, M. A., Computational description of nanocrystalline deformation based on crystal plasticity. DOI: 10.1016/j.actamat.2004.05.036

  8. Gall, K., Iesulauro, E., Hui, H., and Ingraffea, A., Atomistic and continuum based fracture modeling in single crystal silicon.

  9. Gertsman, V. Y., Birringer, R., Valiev, R. Z., and Gleiter, H., On the structure and strength of ultrafine grained copper produced by severe plastic deformation. DOI: 10.1016/0956-716X(94)90045-0

  10. Holian, B. L. and Ravelo, R., Fracture simulations using largescale molecular dynamics. DOI: 10.1103/PhysRevB.51.11275

  11. Horstemeyer, M. F., Baskes, M. I., and Plimpton, S. J., Length scale and time scale effects on the plastic flow of FCC metals. DOI: 10.1016/S1359-6454(01)00149-5

  12. Kumar, K. S., Suresh, S., Chisolm, M. F., Horton, J. A., and Wang, P., Deformation of electodeposited nanocrystalline nickel. DOI: 10.1016/S1359-6454(02)00421-4

  13. Nakano, A., Kalia, R. K., and Vashishta, P., Growth of pore interfaces and roughness of fracture surfaces in porous silica: Million particle molecular-dynamics simulations. DOI: 10.1103/PhysRevLett.73.2336

  14. Needleman, A., An analysis of tensile decohesion along an interface. DOI: 10.1016/0022-5096(90)90001-K

  15. Needleman, A., Micromechanical modeling of interfacial decohesion. DOI: 10.1016/0304-3991(92)90117-3

  16. Ortiz, M. and Pandolfi, A., A class of cohesive elements for the simulation of three-dimensional crack propagation.

  17. Plimpton, S. J., Fast parallel algorithms for short-range molecular dynamics. DOI: 10.1006/jcph.1995.1039

  18. Rice, J. R., Dislocation nucleation from a crack tip: An analysis based on the peierls concept. DOI: 10.1016/s0022-5096(05)80012-2

  19. Sanders, P. G., Eastman, J. A., and Weertman, J. R., Elastic and tensile behavior of nanocrystalline copper and palladium. DOI: 10.1016/S1359-6454(97)00092-X

  20. Schiotz, J., Vegge, T., Tolla, F. D. D., and Jacobsen, K. W., Atomic-scale simulations for the mechanical deformation of nanocrystalline metals. DOI: 10.1103/PhysRevB.60.11971

  21. Spearot, D. E., Jacob, K. I., and McDowell, D. L., Non-local separation constitutive laws for interfaces and their relation to nanoscale simulations. DOI: 10.1016/j.mechmat.2003.08.002

  22. Sundararaghavan, V. and Zabaras, N., Combined MD and continuum approaches towards modeling inter-granular failure using cohesive zone models.

  23. Sundararaghavan, V. and Zabaras, N., Design of microstructuresensitive properties in elasto-viscoplastic polycrystals using multi-scale homogenization. DOI: 10.1016/j.ijplas.2006.01.001

  24. Suryanarayanan, R., Frey, C. A., Sastry, S. M. L., Waller, B. E., Bates, S. E., and Buhro, W. E., Mechanical properties of nanocrystalline copper produced by solution-phase synthesis. DOI: 10.1557/JMR.1996.0053

  25. Swygenhoven, H. V., Spaczer, M., Caro, A., and Farkas, D., Competing plastic deformation mechanisms in nanophase metals. DOI: 10.1103/PhysRevB.60.22

  26. Swygenhoven, H. V., Plastic deformation in metals with nanosized grains: Atomistic simulations and experiments. DOI: 10.4028/www.scientific.net/MSF.447-448.3

  27. Torre, F. D., Swygenhoven, H. V., and Victoria, M., Nanocrystalline electrodeposited Ni: Microstructure and tensile properties. DOI: 10.1016/S1359-6454(02)00198-2

  28. Tvergaard, V. and Hutchinson, J. W., The influence of plasticity on mixed-mode interface toughness. DOI: 10.1016/0022-5096(93)90057-M

  29. Tvergaard, V. and Hutchinson, J. W., Effect of strain dependent cohesive zone model on predictions of crack growth resistance. DOI: 10.1016/0020-7683(95)00261-8

  30. Warner, D. H., Sansoz, F., and Molinari, J. F., Atomistic based continuum investigation of plastic deformation in nanocrystalline copper. DOI: 10.1016/j.ijplas.2005.04.014

  31. Wei, Y. J. and Anand, L., Grain-boundary sliding and separation in polycrystalline metals: Application to nanocrystalline fcc metals. DOI: 10.1016/j.jmps.2004.04.006

  32. Wei, Y., Su, C., and Anand, L., A computational study of the mechanical behavior of nanocrystalline fcc metals. DOI: 10.1016/j.actamat.2006.03.007

  33. Willam, K., Simulation issues of distributed and localized failure computations.

  34. Xu, X. P. and Needleman, A., Numerical simulations of fast crack growth in brittle solids. DOI: 10.1016/0022-5096(94)90003-5

  35. Yamakov, V., Saether, E., Phillips, D. R., and Glaessgen, E. H., Molecular-dynamics simulation-based cohesive zone representation of intergranular fracture processes in aluminum. DOI: 10.1016/j.jmps.2006.03.004

  36. Yamakov, V., Wolf, D., Salazar, M., Phillpot, S. R., and Gleiter, H., Length-scale effects in the nucleation of extended dislocations in nanocrystalline Al by molecular-dynamics simulation. DOI: 10.1016/S1359-6454(01)00167-7

  37. Yamakov, V., Wolf, D., Phillpot, S. R., and Gleiter, H., Grainboundary diffusion creep in nanocrystalline palladium by molecular-dynamics simulations. DOI: 10.1016/S1359-6454(01)00329-9

  38. Zavattieri, P. D. and Espinosa, H. D., Grain level analysis of crack initiation and propagation in brittle materials. DOI: 10.1016/S1359-6454(01)00292-0

  39. Zener, C. and Hollomon, J. H., Effect of strain rate upon plastic flow of steel. DOI: 10.1063/1.1707363

  40. Zhou, S. J., Lomdahl, P. S., Voter, A. F., and Holian, B. L., Three-dimensional fracture via large-scale molecular dynamics. DOI: 10.1016/S0013-7944(98)00053-8

ЦИТИРОВАНО В
  1. Sun S., Sundararaghavan V., Modeling Crack Propagation in Polycrystalline Microstructure Using Variational Multiscale Method, Mathematical Problems in Engineering, 2016, 2016. Crossref

  2. Panwar Shardul, Sundararaghavan Veera, Dislocation theory-based cohesive model for microstructurally short fatigue crack growth, Materials Science and Engineering: A, 708, 2017. Crossref

  3. Rezaei Shahed, Jaworek David, Mianroodi Jaber Rezaei, Wulfinghoff Stephan, Reese Stefanie, Atomistically motivated interface model to account for coupled plasticity and damage at grain boundaries, Journal of the Mechanics and Physics of Solids, 124, 2019. Crossref

  4. Rezaei Shahed, Rezaei Mianroodi Jaber, Khaledi Kavan, Reese Stefanie, A nonlocal method for modeling interfaces: Numerical simulation of decohesion and sliding at grain boundaries, Computer Methods in Applied Mechanics and Engineering, 362, 2020. Crossref

Портал Begell Электронная Бибилиотека e-Книги Журналы Справочники и Сборники статей Коллекции Цены и условия подписки Begell House Контакты Language English 中文 Русский Português German French Spain