Доступ предоставлен для: Guest
International Journal for Multiscale Computational Engineering

Выходит 6 номеров в год

ISSN Печать: 1543-1649

ISSN Онлайн: 1940-4352

The Impact Factor measures the average number of citations received in a particular year by papers published in the journal during the two preceding years. 2017 Journal Citation Reports (Clarivate Analytics, 2018) IF: 1.4 To calculate the five year Impact Factor, citations are counted in 2017 to the previous five years and divided by the source items published in the previous five years. 2017 Journal Citation Reports (Clarivate Analytics, 2018) 5-Year IF: 1.3 The Immediacy Index is the average number of times an article is cited in the year it is published. The journal Immediacy Index indicates how quickly articles in a journal are cited. Immediacy Index: 2.2 The Eigenfactor score, developed by Jevin West and Carl Bergstrom at the University of Washington, is a rating of the total importance of a scientific journal. Journals are rated according to the number of incoming citations, with citations from highly ranked journals weighted to make a larger contribution to the eigenfactor than those from poorly ranked journals. Eigenfactor: 0.00034 The Journal Citation Indicator (JCI) is a single measurement of the field-normalized citation impact of journals in the Web of Science Core Collection across disciplines. The key words here are that the metric is normalized and cross-disciplinary. JCI: 0.46 SJR: 0.333 SNIP: 0.606 CiteScore™:: 3.1 H-Index: 31

Indexed in

Numerical Modeling of Dielectric Breakdown in Solid Propellant Microstructures

Том 8, Выпуск 5, 2010, pp. 523-533
DOI: 10.1615/IntJMultCompEng.v8.i5.70
Get accessGet access

Краткое описание

This study addresses the industrial issue of dielectric breakdown in aluminized solid propellants. Direct simulations at the microscale level are performed by considering monodisperse hard sphere systems obtained by a packing algorithm. Steady Maxwell equations are solved using a finite differences technique, and breakdown dynamics is modeled by a quasi-steady succession of local breakdowns between particles. Validations of the numerical procedure are successfully carried out on the prediction of the effective electrical conductivity of random suspensions of spheres. Computations of the breakdown field for monodisperse random dispersions accurately match some experimental data as well as an existing mixture law based on the mean nearest-neighbor distance. This mixture law is then applied to four industrial propellants, for which realistic microstructures have been generated and breakdown experimental are data available. It appears that this law is reasonably accurate to predict the breakdown strength of real solid propellants.

ЛИТЕРАТУРА
  1. Araujo, F. and Rosenberg, H., Switching behaviour and DC electrical conductivity of epoxy-resin/metal-powder composites. DOI: 10.1088/0022-3727/9/6/015

  2. Beale, P. D. and Duxbury, P. M., Dielectric breakdown in metalloaded dielectrics. DOI: 10.1103/PhysRevB.37.2785

  3. Berryman, J. G., Random close packing of hard spheres and discs. DOI: 10.1103/PhysRevA.27.1053

  4. Bonnecaze, R. T. and Brady, J. F., The effective conductivity of random suspensions of spherical particles. DOI: 10.1098/rspa.1991.0025

  5. Bruggeman, D., Berechnung verschiedener physikalischer konstanten von heterogenen substanzen. DOI: 10.1002/andp.19354160705

  6. Campo, M. A., Woo, L. Y., Mason, T. O., and Garboczi, E. J., Frequency-dependent electrical mixing law behavior in spherical particle composites. DOI: 10.1023/A:1021642118889

  7. Davenas, D. and Rat, R., Sensitivity of solid rocket motors to electrostatic discharge: History and future. DOI: 10.2514/2.6003

  8. Duxbury, P. M., Beale, P. D., and Leath, P. L., Size effects of breakdown in quenched random media. DOI: 10.1103/PhysRevLett.57.1052

  9. Duxbury, P. M., Beale, P. D., Bak, H., and Schroeder, P. A., Capacitance and dielectric breakdown of metal-loaded dielectrics. DOI: 10.1088/0022-3727/23/12/010

  10. Feitosa, K., Marze, S., Saint-Jalmes, A., and Durian, D. J., Electrical conductivity of dispersions: From dry foams to dilute duspensions. DOI: 10.1088/0953-8984/17/41/001

  11. Gallier, S. and Hiernard, F., Microstructure of composite propellants using simulated packings and X-Ray tomography. DOI: 10.2514/1.30454

  12. Gallier, S. and Guery, J. F., Regression fronts in random sphere packs: Application to composite solid propellant burning rate. DOI: 10.1016/j.proci.2008.06.017

  13. Gyure, M. F. and Beale, P. D., Dielectric breakdown of a random array of conducting cylinders. DOI: 10.1103/PhysRevB.40.9533

  14. Gyure, M. F. and Beale, P. D., Dielectric breakdown in continuous models of metal-loaded dielectrics. DOI: 10.1103/PhysRevB.46.3736

  15. Jodrey, W. S. and Tory, E. M., Computer simulation of close random packing of equal spheres. DOI: 10.1103/PhysRevA.32.2347

  16. Kent, R. and Rat, R., Static electricity phenomena in the manufacture and handling of solid propellants. DOI: 10.1016/0304-3886(85)90048-8

  17. Kent, R., Phènomènes d’èlectricitè statique dans les propergols solides.

  18. Larson, R. W., Beale, P. D, Curry, J. D., Eriksen, F., Frisoni, M. F., and Gyure, M. F., Microstructural modeling of electrical breakdown in solid fuel propellants.

  19. Lubachevsky, B. D. and Stillinger, F. H., Geometric properties of random disk packings. DOI: 10.1007/BF01025983

  20. Meredith, R. E. and Tobias, C. W., Conductivities in emulsion. DOI: 10.1149/1.2428064

  21. Ottavi, H., Clerc, C., Giraud, G., Roussenq, J., Guyon, E., and Mitescu, C., Electrical conductivity of a mixture of conducting and insulating spheres: An Application of Some Percolation Concepts. DOI: 10.1088/0022-3719/11/7/021

  22. Scher, H. and Zallen, R., Critical density in percolation processes. DOI: 10.1063/1.1674565

  23. Sunderaj, V. E., Curry, J. D., and Larson, R. W., Modeling of electrostatic fields in solid propellants using finite element techniques. DOI: 10.1109/NSEMC.1989.37164

  24. Sussman, M., Smereka, P., and Osher, S., A level-set approach for computing solution to incompressible two-phase flow. DOI: 10.1006/jcph.1994.1155

  25. Torquato, S., Nearest-neighbor statistics for packings of hard spheres and disks. DOI: 10.1103/PhysRevE.51.3170

  26. Torquato, S., Random Heterogeneous Materials.

  27. Turner, J. C., Two-phase conductivity: The electrical conductance of liquid-fluidized beds of spheres. DOI: 10.1016/0009-2509(76)80034-6

  28. Vertruyen, B., Cloots, R., Ausloos, M., Fagnard, J.-F., and Vanderbemden, P., Electrical transport and percolation in magnetoresistive manganite/insulating oxide composites: Case of La0.7Ca<sub>0.3</sub>MnO<sub>3</sub>/Mn<sub>3</sub>O<sub>4</sub>. DOI: 10.1103/PhysRevB.75.165112

ЦИТИРОВАНО В
  1. Jackson Thomas L., Modeling of Heterogeneous Propellant Combustion: A Survey, AIAA Journal, 50, 5, 2012. Crossref

  2. Amadio Guilherme, Jackson Thomas L., A New Packing Code for Creating Mirostructures of Propellants and Explosives, 51st AIAA/SAE/ASEE Joint Propulsion Conference, 2015. Crossref

  3. Shen Liu-Lei, Shen Zhi-Bin, Li Hai-Yang, Zhang Ze-Yuan, A Voronoi cell finite element method for estimating effective mechanical properties of composite solid propellants, Journal of Mechanical Science and Technology, 31, 11, 2017. Crossref

  4. Sensitivity, in Metal‐Fluorocarbon Based Energetic Materials, 2012. Crossref

Портал Begell Электронная Бибилиотека e-Книги Журналы Справочники и Сборники статей Коллекции Цены и условия подписки Begell House Контакты Language English 中文 Русский Português German French Spain