Доступ предоставлен для: Guest
Портал Begell Электронная Бибилиотека e-Книги Журналы Справочники и Сборники статей Коллекции
International Journal for Multiscale Computational Engineering
Импакт фактор: 1.016 5-летний Импакт фактор: 1.194 SJR: 0.452 SNIP: 0.68 CiteScore™: 1.18

ISSN Печать: 1543-1649
ISSN Онлайн: 1940-4352

Том 17, 2019 Том 16, 2018 Том 15, 2017 Том 14, 2016 Том 13, 2015 Том 12, 2014 Том 11, 2013 Том 10, 2012 Том 9, 2011 Том 8, 2010 Том 7, 2009 Том 6, 2008 Том 5, 2007 Том 4, 2006 Том 3, 2005 Том 2, 2004 Том 1, 2003

International Journal for Multiscale Computational Engineering

DOI: 10.1615/IntJMultCompEng.2011002758
pages 543-563


Maria Laura De Bellis
Dipartimento di Ingegneria Strutturale e Geotecnica, Università di Roma "La Sapienza," Via Eudossiana, 18, 00184 Roma, Italy
Daniela Addessi
Dipartimento di Ingegneria Strutturale e Geotecnica, Università di Roma "La Sapienza," Via Eudossiana, 18, 00184 Roma, Italy

Краткое описание

This paper presents a multi-scale model for the analysis of the in-plane structural response of regular masonry. It is based on a computational periodic homogenization technique and is characterized by the adoption of the Cosserat continuum model at the macroscopic structural level, taking into account the influence of the microstructure on the global response and correctly describing the localization phenomena; at the microscopic representative volume element (RVE) level, where the nonlinear constitutive behavior, geometry, and arrangement of the masonry constituents are modeled in detail, a standard Cauchy model is employed. An isotropic nonsymmetric damage model is adopted for the bricks and mortar joints. The solution algorithm is based on a parallelization strategy and on the finite-element method. Some numerical applications on typical masonry structures are reported, showing both the global response curves and the stress and damage distributions on the RVEs.


  1. Anthoine, A., Derivation of the in-plane elastic characteristics of masonry through homogenization theory. DOI: 10.1016/0020-7683(94)00140-R

  2. Casolo, S., Macroscopic modelling of structured materials: Relationship between orthotropic cosserat continuum and rigid elements. DOI: 10.1016/j.ijsolstr.2005.03.037

  3. De Borst, R., Simulation of strain localization: A reappraisal of the cosserat continuum. DOI: 10.1108/eb023842

  4. Feyel, F., Multiscale non linear FE2 analysis of composite structures: Fiber size effects. DOI: 10.1051/jp4:2001524

  5. Feyel, F., A multilevel finite element method (FE2) to describe the response of highly non-linear structures using generalized continua. DOI: 10.1016/S0045-7825(03)00348-7

  6. Forest, S., Mechanics of generalized continua: Construction by homogenization. DOI: 10.1051/jp4:1998405

  7. Forest, S., Mechanics of generalized continua: Construction by homogenization.

  8. Forest, S. and Sab, K., Cosserat overall modelling of heterogeneous materials. DOI: 10.1016/S0093-6413(98)00059-7

  9. Forest, S. and Trinh, K., Generalized continua and non-homogeneous boundary conditions in homogenization methods. DOI: 10.1002/zamm.201000109

  10. Ghosh, S., Lee, K., and Raghavan, P., A multi-level computation model for multi-scale damage analysis in composite and porous media. DOI: 10.1016/S0020-7683(00)00167-0

  11. Guedes, J. and Kikuchi, N., Preprocessing and postprocessing for materials based on the homogeneization method with adaptative finite element method. DOI: 10.1016/0045-7825(90)90148-F

  12. Janicke, R. and Diebels, S., A numerical homogenisation strategy for micromorphic continua.

  13. Kaczmarczyk, L., Pearce, C., and Bicanic, N., Scale transition and enforcement of RVE boundary conditions in second-order computational homogenization. DOI: 10.1002/nme.2188

  14. Kouznetsova, V. G., Computational Homogenization for the Multi-Scale Analysis of Multi-Phase Materials.

  15. Kruch, S. and Forest, S., Computation of coarse grain structures using a homogeneous equivalent medium. DOI: 10.1051/jp4:1998825

  16. Lopez, J., Oller, S., Onate, E., and Lubliner, J., A homogeneous constitutive model for masonry. DOI: 10.1002/(SICI)1097-0207(19991210)46:10<1651::AID-NME718>3.0.CO;2-2

  17. Lourenço, P. B., Computational strategies for masonry structures.

  18. Magenes, G., Comportamento sismico di murature di mattoni: Resistenza e meccanismi di rottura di maschi murari.

  19. Massart, T., Peerlings, R., and Geers, M., An enhanced multi-scale approach for masonry wall computations with localization of damage. DOI: 10.1002/nme.1799

  20. Massart, T. J., Multiscale modelling of damage in masonry structures.

  21. Miehe, C., Schrder, J., and Schotte, J., Computational homogenization analysis in finite plasticity. Simulation of texture development in polycrystalline materials. DOI: 10.1016/S0045-7825(98)00218-7

  22. Moulinec, H. and Suquet, P., A numerical method for computing the overall response of non-linear composites with complex microstructure. DOI: 10.1016/S0045-7825(97)00218-1

  23. Muhlhaus, H. B., Application of cosserat theory in numerical solutions of limit load problems. DOI: 10.1007/BF00538366

  24. Oliver, J., Cervera, M., Oller, S., and Lubliner, J., Isotropic damage models and smeared crack analysis of concrete.

  25. Page, A. W., Finite element model for masonry.

  26. Pegon, P. and Anthoine, A., Numerical strategies for solving continuum damage problems with softening: Application to the homogenization of masonry. DOI: 10.1016/S0045-7949(96)00153-8

  27. Salerno, G. and de Felice, G., Continuum modeling of periodic brickwork. DOI: 10.1016/j.ijsolstr.2008.10.034

  28. Sengupta, A., Papadopoulos, P., and Taylor, R., Multiscale finite element modeling of superelasticity in Nitinol polycrystals. DOI: 10.1007/s00466-008-0331-x

  29. Smit, R. J. M., Brekelmans, W. A. M., and Meijer, H. E. H., Prediction of the mechanical behaviour of nonlinear heterogeneous systems by multi-level finite element modeling. DOI: 10.1016/S0045-7825(97)00139-4

  30. Stefanou, I., Sulem, J., and Vardoulakis, I., Three-dimensional cosserat homogenization of masonry structures: Elasticity. DOI: 10.1007/s11440-007-0051-y

  31. Suquet, P. M., Local and global aspects in the mathematical theory of plasticity.

  32. Terada, K., Hori, M., Kyoya, T., and Kikuchi, N., Simulation of the multi-scale convergence in computational homogenization approach. DOI: 10.1016/S0020-7683(98)00341-2

  33. Trovalusci, P. and Masiani, R., Cosserat and cauchy materials as continuum models of brick masonry. DOI: 10.1007/BF00429930

  34. Trovalusci, P. and Masiani, R., Material symmetries of micropolar continua equivalent to lattices. DOI: 10.1016/S0020-7683(98)00073-0

  35. Trovalusci, P. and Masiani, R., A multifield model for blocky materials based on multiscale description. DOI: 10.1016/j.ijsolstr.2005.03.027

  36. van der Sluis, O., Vosbeek, P., Schreurs, P. J. G., and Meijer, H. E. H., Homogenization of heterogeneous polymers. DOI: 10.1016/S0020-7683(98)00144-9

Articles with similar content:

Assessment of Periodic Homogenization-Based Multiscale Computational Schemes for Quasi-Brittle Structural Failure
International Journal for Multiscale Computational Engineering, Vol.7, 2009, issue 2
B. C. N. Mercatoris, T. J. Massart
International Journal for Multiscale Computational Engineering, Vol.12, 2014, issue 2
Daniele Baraldi, Antonella Cecchi
International Journal for Multiscale Computational Engineering, Vol.12, 2014, issue 6
Seung-Kyum Choi, Recep Gorguluarslan
Finite Strain Micromechanical Modeling of Multiphase Composites
International Journal for Multiscale Computational Engineering, Vol.6, 2008, issue 5
Jacob Aboudi
Composites: Mechanics, Computations, Applications: An International Journal, Vol.10, 2019, issue 3
Emanuele Reccia, Daniele Baraldi, Emilio Meroi, Antonella Cecchi, Claudia Brito de Carvalho Bello