Доступ предоставлен для: Guest
International Journal for Multiscale Computational Engineering

Выходит 6 номеров в год

ISSN Печать: 1543-1649

ISSN Онлайн: 1940-4352

The Impact Factor measures the average number of citations received in a particular year by papers published in the journal during the two preceding years. 2017 Journal Citation Reports (Clarivate Analytics, 2018) IF: 1.4 To calculate the five year Impact Factor, citations are counted in 2017 to the previous five years and divided by the source items published in the previous five years. 2017 Journal Citation Reports (Clarivate Analytics, 2018) 5-Year IF: 1.3 The Immediacy Index is the average number of times an article is cited in the year it is published. The journal Immediacy Index indicates how quickly articles in a journal are cited. Immediacy Index: 2.2 The Eigenfactor score, developed by Jevin West and Carl Bergstrom at the University of Washington, is a rating of the total importance of a scientific journal. Journals are rated according to the number of incoming citations, with citations from highly ranked journals weighted to make a larger contribution to the eigenfactor than those from poorly ranked journals. Eigenfactor: 0.00034 The Journal Citation Indicator (JCI) is a single measurement of the field-normalized citation impact of journals in the Web of Science Core Collection across disciplines. The key words here are that the metric is normalized and cross-disciplinary. JCI: 0.46 SJR: 0.333 SNIP: 0.606 CiteScore™:: 3.1 H-Index: 31

Indexed in

A MULTISCALE MICRO-CONTINUUM MODEL TO CAPTURE STRAIN LOCALIZATION IN COMPOSITE MATERIALS

Том 10, Выпуск 5, 2012, pp. 487-501
DOI: 10.1615/IntJMultCompEng.2012002975
Get accessGet access

Краткое описание

This paper presents a plasticity/damage formulation in the context of the physically based micro-continuum theory for multiphase materials described in a companion paper (see Vernerey, A physically-based micro-continuum theory, Mech. Adv. Mater. Struct., 2012). Based on a micro-structurally motivated decomposition of the deformation, the presented inelastic formulation is capable of characterizing the independent plastic/damage processes occurring in different phases (such as fiber or inclusions) and predicting the overall material behavior. The inelastic constitutive relation can thus be cast in a simple, physically motivated form, compared to conventional models. Such a formulation is thus very attractive for establishing a link between materials structure and properties. To illustrate the presented framework, we apply the micro-continuum model to the tensile failure of fiber-reinforced composite and compare it to a "brute force" approach in which the microstructure is explicitly modeled. We show that the model captures accurately the evolution of various features that cannot be calculated with conventional methods such as the independent stress, strain, and damage in the matrix and fibers and the fiber/matrix interface. Moreover, the existence of a size effect during failure is accounted for correctly.

Ключевые слова: nonlocal theory, strain localization, damage, size effects
ЛИТЕРАТУРА
  1. Bazant, Z., Why continuum damage is nonlocal: Micromechanical arguments. DOI: 10.1061/(ASCE)0733-9399(1991)117:5(1070)

  2. Bazant, Z. and Jirasek, M., Nonlocal integral formulations of plasticity and damage: Survey of progress. DOI: 10.1061/(ASCE)0733-9399(2002)128:11(1119)

  3. Belytschko, T., Liu, W.K., and Moran, B., Nonlinear Finite Elements for Continua and Structures.

  4. Cosserat, E. and Cosserat, F., Theorie des Corps Deformables. DOI: 10.1038/081067a0

  5. Eringen, A.C., Microcontinuum Field Theories 1: Foundations and Solids.

  6. Fleck, N.A. and Hutchinson, J.W., Strain gradient plasticity. DOI: 10.1016/S0065-2156(08)70388-0

  7. Fleck, N.A. and Hutchinson, J.W., A reformulation of strain gradient plasticity. DOI: 10.1016/S0022-5096(01)00049-7

  8. Fleck, N.A., Muller, G.M., Ashby, M.F., and Hutchinson, J.W., Strain gradient plasticity: Theory and experiment. DOI: 10.1016/0956-7151(94)90502-9

  9. Forest, S., Homogenization methods and the mechanics of generalized continua. Part 2. DOI: 10.2298/TAM0229113F

  10. Forest, S., Barbe, F., and Cailletaud, G., Cosserat modelling of size effects in the mechanical behaviour of polycrystals and multi-phase materials. DOI: 10.1016/S0020-7683(99)00330-3

  11. Forest, S., Pradel, F., and Sab, K., Asymptotic analysis of heterogeneous Cosserat media. DOI: 10.1016/S0020-7683(00)00295-X

  12. Germain, P., The method of virtual power in continuum mechanics. Part 2: Microstrucure. DOI: 10.1137/0125053

  13. Gonzalez, C. and Llorca, J., Multiscale modeling of fracture in fiber-reinforced composites. DOI: 10.1016/j.actamat.2006.05.007

  14. Hao, S., Liu, W.K., Moran, B., Vernerey, F., and Olson, G.B., Multi-scale constitutive model and computational framework for the design of ultra-high strength, high toughness steels. DOI: 10.1016/j.cma.2003.12.026

  15. Iatridis, J.C. and Gwynn, I., Mechanisms for mechanical damage in the intervertebral disc annulus fibrosus. DOI: 10.1016/j.jbiomech.2003.12.026

  16. Lemaitre, J. and Chaboche, J.L., Mecanique des Materiaux Solides.

  17. Olson, G.B., Beyond discovery: Design for a new material world. DOI: 10.1016/S0364-5916(01)00041-4

  18. Saje, M., Pan, J., and Needlman, A., Void nucleation effects on shear localization in porous plastic solids. DOI: 10.1007/BF00017128

  19. Vernerey, F.J., A physically-based micro-continuum theory.

  20. Vernerey, F.J., Liu, W.K., and Moran, B., Multi-scale micromorphic theory for hierarchical materials. DOI: 10.1016/j.jmps.2007.04.008

  21. Vernerey, F.J., Liu, W.K., Moran, B., and Olson, G., A micromorphic model for the multiple scale failure of heterogeneous materials. DOI: 10.1016/j.jmps.2007.09.008

ЦИТИРОВАНО В
  1. Vernerey Franck J., Kabiri Mirmohammadreza, Adaptive concurrent multiscale model for fracture and crack propagation in heterogeneous media, Computer Methods in Applied Mechanics and Engineering, 276, 2014. Crossref

Портал Begell Электронная Бибилиотека e-Книги Журналы Справочники и Сборники статей Коллекции Цены и условия подписки Begell House Контакты Language English 中文 Русский Português German French Spain