Доступ предоставлен для: Guest
Портал Begell Электронная Бибилиотека e-Книги Журналы Справочники и Сборники статей Коллекции
International Journal for Multiscale Computational Engineering
Импакт фактор: 1.016 5-летний Импакт фактор: 1.194 SJR: 0.554 SNIP: 0.82 CiteScore™: 2

ISSN Печать: 1543-1649
ISSN Онлайн: 1940-4352

Выпуски:
Том 18, 2020 Том 17, 2019 Том 16, 2018 Том 15, 2017 Том 14, 2016 Том 13, 2015 Том 12, 2014 Том 11, 2013 Том 10, 2012 Том 9, 2011 Том 8, 2010 Том 7, 2009 Том 6, 2008 Том 5, 2007 Том 4, 2006 Том 3, 2005 Том 2, 2004 Том 1, 2003

International Journal for Multiscale Computational Engineering

DOI: 10.1615/IntJMultCompEng.v9.i2.30
pages 175-191

MULTISCALE ANALYSIS OF STOCHASTIC FLUCTUATIONS OF DYNAMIC YIELD OF MAGNETORHEOLOGICAL FLUIDS

Yong-Bo Peng
State Key Laboratory of Disaster Reduction in Civil Engineering, and Shanghai Institute of Disaster Prevention and Relief, Tongji University, Shanghai 200092, China
Jie Li
State Key Laboratory of Disaster Reduction in Civil Engineering, and School of Civil Engineering, Tongji University, Shanghai 200092, China

Краткое описание

The classical visco-plastic models of magnetorheological fluids are essentially phenomenological macroscale descriptions of fluids, incapable of revealing the interaction between suspensions and carrier fluids that results in a stochastic fluctuation of dynamic yield, and incapable of reflecting the impact of external magnetic fields on this fluctuation as well. In the present paper, the dynamical yield behavior of magnetorheological fluids is investigated by upscaling the information of the microscale interaction between particles, employing a large-scale molecular dynamical simulation technique, to the macroscale bulk behavior. We thus conduct a multiscale model of dynamic yield of magnetorheological fluids based on the conservation principle of system energy at different scales, so as to provide seamless information passing. The investigation reveals that the dynamic yield exhibits nonlinear and stochastic fluctuations due to the heterogeneity of sequence and number of cluster-sheet reconstructions with shear fields loading, and the Brownian motion of suspensions with initial random conditions. Besides, we investigate the thermal fluctuation of microscale particle motion, the variation of the relationship between stress and strain, and the variation of the constitutive relationship of shear rate. It is noted that the microscale thermal fluctuation is far more than the macroscale variation since that the upscaling from the microscale to the macroscale results in the degradation of fluctuations. The macroscale variation, meanwhile, is still significant, which is supposed to be considered in the design and optimization of magnetorheological fluids.

ЛИТЕРАТУРА

  1. Ahmadkhanlou, F., Mahboob, M., Bechtel, S., and Washington, G., Experiments and models of the magneto rheological behavior of high weight percent suspensions of carbonyl iron particles in silicon oil. DOI: 10.1115/1.2979001

  2. Ahn, K. H. and Klingenberg, D. J., Relaxation of polydisperse electrorheological suspensions. DOI: 10.1122/1.550482

  3. Allen, M. P. and Tildesley, D. J., Computer Simulation of Liquids.

  4. Belytschko, T. and Xiao, S., Coupling methods for continuum model with molecular model. DOI: 10.1615/IntJMultCompEng.v1.i1.100

  5. Bonnecaze, R. T. and Brady, J. F., Yield stresses in electrorheological fluids. DOI: 10.1122/1.550343

  6. Bossis, G., Lemaire, E., Volkova, O., and Clercx, H., Yield stress in magnetorheological and electrorheological fluids: A comparison between microscopic and macroscopic structural models. DOI: 10.1122/1.550838

  7. Davis, L. C., Finite-element analysis of particle-particle forces in electrorheological fluids. DOI: 10.1063/1.107441

  8. Doi, M. and Edwards, S. F., The Theory of Polymer Dynamics.

  9. Ekwebelam, C. and See, H., Microstructural investigations of the yielding behaviour of bidisperse magnetorheological fluids. DOI: 10.1007/s00397-008-0297-9

  10. Fermigier, M. and Gust, A. P., Structure evolution in a paramagnetic latex suspension. DOI: 10.1016/0304-8853(93)91036-7

  11. Fish, J., Bridging the scales in nano engineering and science. DOI: 10.1007/s11051-006-9090-9

  12. Fish, J. and Chen, W., Discrete-to-continuum bridging based on multigrid principles. DOI: 10.1016/j.cma.2003.12.022

  13. Fish, J. and Schwob, C., Towards constitutive model based on atomistics. DOI: 10.1615/IntJMultCompEng.v1.i1.50

  14. Fish, J. and Yuan, Z., Multiscale enrichment based on partition of unity. DOI: 10.1002/nme.1230

  15. Ginder, J. M., Davis, L. C., and Elle, L. D., Rheology of magnetorheological fluids: Models and measurements. DOI: 10.1142/S0217979296001744

  16. Hughes, T. J. R., Multiscale phenomena- greens-functions, the dirichlet-to-neumann formulation, subgrid scale models, bubbles and the origins of stabilized methods. DOI: 10.1016/0045-7825(95)00844-9

  17. Jolly, M. R., Carlson, J. D., and Munoz, B. C., A model of the behaviour of magnetorheological materials. DOI: 10.1088/0964-1726/5/5/009

  18. Jones, J. E., On the determinations of molecular fields i: From the variation of the viscosity of a gas with temperature. DOI: 10.1098/rspa.1924.0081

  19. Jones, J. E., On the determinations of molecular fields ii: From the equation of state of a gas. DOI: 10.1098/rspa.1924.0082

  20. Kevrekidis, I. G., Gear, C. W., and Hummer, G., Equation-free: The computer-aided analysis of comptex multiscale systems.

  21. Kittipoomwong, D., Klingenberg, D. J., and Ulicny, J. C., Dynamic yield stress enhancement in bidisperse magnetorheological fluids. DOI: 10.1122/1.2085175

  22. Klingenberg, D. J., van Swol, F., and Zukoski, C. F., Dynamic simulation of electrorheological suspensions. DOI: 10.1063/1.457256

  23. Klingenberg, D. J., van Swol, F., and Zukoski, C. F., The small shear rate response of electrorheological suspensions i: Simulation in the point-dipole limit. DOI: 10.1063/1.460402

  24. Klingenberg, D. J., van Swol, F., and Zukoski, C. F., The small shear rate response of electrorheological suspensions ii: Extension beyond the point-dipole limit. DOI: 10.1063/1.460403

  25. Kormann, C., Laun, H. M., and Richter, H. J., Mr fluids with nano-sized magnetic particles. DOI: 10.1142/S0217979296001604

  26. Lemaire, E., Meunier, A., and Bossis, G., Influence of the particle size on the rheology of magnetorheological fluids. DOI: 10.1122/1.550614

  27. Li, J. and Chen, J. B., Stochastic Dynamics of Structures. DOI: 10.1002/9780470824269

  28. Liu, W. K., Karpov, E. G., and Park, H. S., Nano Mechanics and Materials: Theory, Multiscale Methods and Applications. DOI: 10.1002/0470034106

  29. Martin, J. E., Anderson, R. A., and Tigges, C. P., Simulation of the athermal coarsening of composites structured by a biaxial field. DOI: 10.1063/1.476226

  30. Melle, S., Calderon, O. G., Rubio, M. A., and Fuller, G. G., Microstructure evolution in magnetorheological suspensions governed by mason number. DOI: 10.1103/PhysRevE.68.041503

  31. Mohebi, M., Jamasbi, N., and Liu, J., Simulation of the formation of noneuqilibrium structures in magnetorheological fluids subject to an external magnetic field.

  32. Plimpton, S. J., Fast parallel algorithms for short-range molecular dynamics. DOI: 10.1006/jcph.1995.1039

  33. Rabinow, J., The magnetic fluid clutch. DOI: 10.1109/T-AIEE.1948.5059821

  34. Swope, W. C., Andersen, H. C., Berens, P. H., and Wilson, K. R., Compute simulation method for the calculation of equilibrium constrains for the formation of physical cluster of molecules: application to small water clusters. DOI: 10.1063/1.442716

  35. Tan, Z. J., Zou, X.W., Zhang,W. B., and Jin, Z. Z., Influence of the size and dielectric properties of particles on electrorheological response. DOI: 10.1103/PhysRevE.59.3177

  36. Verlet, L., Computer ”experiments” on classical fluids i: Thermodynamical properties of lennard-jones molecules. DOI: 10.1103/PhysRev.159.98

  37. Wang, B. and Xiao, Z., A general constitutive equation of an ER suspension based on the internal variable theory. DOI: 10.1007/s00707-002-0928-7Ac

  38. Wereley, N. M., Chaudhuri, A., Yoo, J. H., John, S., Kotha, S., Suggs, A., Radhakrishnan, R., Love, B. J., and Sudarshan, T. S., Bidisperse magnetorheological fluids using fe particles at nanometer and micron scale. DOI: 10.1177/1045389X06056953

  39. Wu, C. W. and Conrad, H., Influence of mixed particle size on electrorheological response. DOI: 10.1063/1.366621


Articles with similar content:

A NEW MULTISCALE FINITE ELEMENT METHOD FOR MECHANICAL ANALYSIS OF PERIODIC HETEROGENEOUS COSSERAT MATERIALS
International Journal for Multiscale Computational Engineering, Vol.11, 2013, issue 4
Hongwu Zhang, Zhaoqian Xie
Size of a Representative Volume Element in a Second-Order Computational Homogenization Framework
International Journal for Multiscale Computational Engineering, Vol.2, 2004, issue 4
Marc Geers, W. A. M. Brekelmans, Varvara G. Kouznetsova
PROBLEMS OF COMPUTATIONAL MECHANICS RELATE TO FINITE-ELEMENT ANALYSIS OF STRUCTURAL CONSTRUCTIONS
International Journal for Computational Civil and Structural Engineering, Vol.1, 2005, issue 2
Sergiy Yu. Fialko, Anatoly V. Perelmuter
REGENERATION CYCLE OF VORTICAL STRUCTURES AND INTERMITTENCY IN HOMOGENEOUS SHEAR FLOW
TSFP DIGITAL LIBRARY ONLINE, Vol.2, 2001, issue
Paolo Gualtieri, Carlo M. Casciola, Renzo Piva
FIRST-PRINCIPLES CALCULATIONS OF ELECTRON AND PHONON TRANSPORT PROPERTIES IN SINGLE CRYSTALS
ICHMT DIGITAL LIBRARY ONLINE, Vol.0, 2015, issue
Bolin Liao, Jiawei Zhou, Gang Chen, Sangyeop Lee