Доступ предоставлен для: Guest
International Journal for Multiscale Computational Engineering

Выходит 6 номеров в год

ISSN Печать: 1543-1649

ISSN Онлайн: 1940-4352

The Impact Factor measures the average number of citations received in a particular year by papers published in the journal during the two preceding years. 2017 Journal Citation Reports (Clarivate Analytics, 2018) IF: 1.4 To calculate the five year Impact Factor, citations are counted in 2017 to the previous five years and divided by the source items published in the previous five years. 2017 Journal Citation Reports (Clarivate Analytics, 2018) 5-Year IF: 1.3 The Immediacy Index is the average number of times an article is cited in the year it is published. The journal Immediacy Index indicates how quickly articles in a journal are cited. Immediacy Index: 2.2 The Eigenfactor score, developed by Jevin West and Carl Bergstrom at the University of Washington, is a rating of the total importance of a scientific journal. Journals are rated according to the number of incoming citations, with citations from highly ranked journals weighted to make a larger contribution to the eigenfactor than those from poorly ranked journals. Eigenfactor: 0.00034 The Journal Citation Indicator (JCI) is a single measurement of the field-normalized citation impact of journals in the Web of Science Core Collection across disciplines. The key words here are that the metric is normalized and cross-disciplinary. JCI: 0.46 SJR: 0.333 SNIP: 0.606 CiteScore™:: 3.1 H-Index: 31

Indexed in

MULTISCALE ANALYSIS OF ANISOTROPIC MATERIALS WITH HEXAGONAL MICROSTRUCTURE AS MICROPOLAR CONTINUA

Том 18, Выпуск 2, 2020, pp. 265-284
DOI: 10.1615/IntJMultCompEng.2020032920
Get accessDownload

Краткое описание

This work discusses the advantages of micropolar theory in modeling anisotropic composite materials with microstructure. A homogenized constitutive model starting from a representative volume element is proposed in order to find an equivalent continuum. Classical (e.g., Cauchy of Grade 1) continua are not always suitable to accurately approximate the behavior of such composites because no size effects, nor lack of symmetries in strain and stress, can be taken into account. This study focuses on composites made of hexagonal rigid particles which interact among themselves through elastic interfaces, so that the deformation energy of the material is concentrated only at the interfaces. Three particle geometries are investigated such as orthotetragonal, auxetic, and chiral. Novel results have been achieved by presenting the behavior of panels with various material symmetries and subjected to concentrated loads.

ЛИТЕРАТУРА
  1. Addessi, D. and Sacco, E., A Multi-Scale Enriched Model for the Analysis of Masonry Panels, Int. J. Solids Struct., vol. 49, no. 6, pp. 865-880,2012.

  2. Alibert, J.J. and Della Corte, A., Second-Gradient Continua as Homogenized Limit of Pantographic Microstructured Plates: A Rigorous Proof, Z Angew. Math. Phys, vol. 66, no. 5, pp. 2855-2870,2015. DOI: 10.1007/s00033-015-0526-x.

  3. Altenbach, H. and Sadowski, T., Failure and Damage Analysis of Advanced Materials, CISM International Centre for Mechanical Sciences, Vienna, Austria: Springer, 2014.

  4. Bacca, M., Bigoni, D., Corso, F.D., and Veber, D., Mindlin Second-Gradient Elastic Properties from Dilute Two-Phase Cauchy-Elastic Composites. Part I: Closed Form Expression for the Effective Higher-Order Constitutive Tensor, Int. J. Solids Struct., vol. 50, no. 24, pp. 4010-4019,2013.

  5. Bacigalupo, A. and Gambarotta, L., Second-Order Computational Homogenization of Heterogeneous Materials with Periodic Microstructure, ZAMM-J. Appl. Math. Mech./Z. Angew. Math. Mech., vol. 90,nos. 10-11,pp. 796-811,2010.

  6. Baraldi, D., Reccia, E., and Cecchi, A., In Plane Loaded Masonry Walls: DEM and FEM/DEM Models. A Critical Review, Meccanica, vol. 53, pp. 1613-1628,2018.

  7. Bouyge, F., Jasiuk, I., and Ostoja-Starzewski, M., A Micromechanically based Couplestress Model of an Elastic Two-Phase Composite, Int. J. Solids Struct., vol. 38, no. 10, pp. 1721-1735,2001.

  8. Budiansky, B., On the Elastic Moduli of Some Heterogeneous Materials, J. Mech. Phys. Solids, vol. 13, no. 4, pp. 223-227,1965.

  9. Civalek, O., Demir, C., and Akgoz, B., Free Vibration and Bending Analyses of Cantilever Microtubules based on Nonlocal Continuum Model, Math. Comput. Appl., vol. 15, no. 2, pp. 289-298,2010.

  10. Demir, C. and Civalek, O., Torsional and Longitudinal Frequency and Wave Response of Microtubules based on the Nonlocal Continuum and Nonlocal Discrete Models, Appl. Math. Model., vol. 37, no. 22, pp. 9355-9367,2013.

  11. Drugan, W. and Willis, J., A Micromechanics-Based Nonlocal Constitutive Equation and Estimates of Representative Volume Element Size for Elastic Composites, J. Mech. Phys. Solids, vol. 44, no. 4, pp. 497-524,1996.

  12. Ehlers, W., Recovering Micropolar Continua from Particle Mechanics by Use of Homogenisation Strategies, Berlin: Springer, pp. 179-189,2011.

  13. Eremeyev, V.A. and Pietraszkiewicz, W., Material Symmetry Group and Constitutive Equations of Micropolar Anisotropic Elastic Solids, Math. Mech. Solids, vol. 21, no. 2, pp. 210-221,2016. DOI: 10.1177/1081286515582862.

  14. Fantuzzi, N., Leonetti, L., Trovalusci, P., and Tornabene, F., Some Novel Numerical Applications of Cosserat Continua, Int. J. Comput. Methods, vol. 15,no.6,p. 1850054,2018. DOI: 10.1142/S0219876218500548.

  15. Fantuzzi, N., Trovalusci, P., and Dharasura, S., Mechanical Behavior of Anisotropic Composite Materials as Micropolar Continua, Front. Mater., vol. 6, no. 1, p. 59,2019.

  16. Favata, A., Trovalusci, P., and Masiani, R., A Multiphysics and Multiscale Approach for Modeling Microcracked Thermo-Elastic Materials, Comput. Mater. Sci., vol. 116, pp. 22-31,2016.

  17. Ferreira, A., MATLAB Codes for Finite Element Analysis: Solids and Structures, Solid Mechanics and Its Applications, The Netherlands: Springer, 2008.

  18. Forest, S.,Dendievel, R., andCanova, G.R., Estimating the Overall Properties of Heterogeneous Cosserat Materials, Model. Simul. Mater. Sci. Eng., vol. 7, no. 5, pp. 829-840,1999. DOI: 10.1088%2F0965-0393%2F7%2F5%2F314.

  19. Forest, S., Pradel, F., and Sab, K., Asymptotic Analysis of Heterogeneous Cosserat Media, Int. J. Solids Struct., vol. 38, no. 26, pp. 4585-4608,2001.

  20. Forest, S. and Sab, K., Cosserat Overall Modeling of Heterogeneous Materials, Mech. Res. Commun., vol. 25, no. 4, pp. 449-454, 1998.

  21. Greco, F., Leonetti, L., Luciano, R., and Blasi, P.N., Effects of Microfracture and Contact Induced Instabilities on the Macroscopic Response of Finitely Deformed Elastic Composites, Compos. PartB: Eng., vol. 107, pp. 233-253,2016.

  22. Greco, F., Leonetti, L., Luciano, R., and Trovalusci, P., Multiscale Failure Analysis of Periodic Masonry Structures with Traditional and Fiber-Reinforced Mortar Joints, Compos. PartB: Eng., vol. 118, pp. 75-95,2017.

  23. Greco, F., Leonetti, L., Medaglia, C.M., Penna, R., and Pranno, A., Nonlinear Compressive Failure Analysis of Biaxially Loaded Fiber Reinforced Materials, Compos. PartB: Eng., vol. 147, pp. 240-251,2018.

  24. Jain, J.R. and Ghosh, S., Damage Evolution in Composites with a Homogenization-Based Continuum Damage Mechanics Model, Int. J. Damage Mechan., vol. 18, no. 6, pp. 533-568,2009. DOI: 10.1177/1056789508091563.

  25. Kouznetsova, V., Geers, M., and Brekelmans, W., Multi-Scale Second-Order Computational Homogenization of Multi-Phase Materials: A Nested Finite Element Solution Strategy, Comput. Methods Appl. Mech. Eng., vol. 193, no. 48, pp. 5525-5550,2004.

  26. Kouznetsova, V., Geers, M.G.D., and Brekelmans, W.A.M., Multi-Scale Constitutive Modelling of Heterogeneous Materials with a Gradient-Enhanced Computational Homogenization Scheme, Int. J. Numer. Methods Eng., vol. 54, no. 8, pp. 1235-1260, 2002.

  27. Kunin, I.A., The Theory of Elastic Media with Microstructure and the Theory of Dislocations, in Mechanics of Generalized Continua, E. Kroner, Ed., Berlin: Springer, pp. 321-329,1968.

  28. Larsson, R. and Zhang, Y., Homogenization of Microsystem Interconnects based on Micropolar Theory and Discontinuous Kinematics, J. Mech. Phys. Solids, vol. 55, no. 4, pp. 819-841,2007.

  29. Leismann, T. and Mahnken, R., Comparison of Hyperelastic Micromorphic, Micropolar and Microstrain Continua, Int. J. Non-Linear Mech, vol. 77, pp. 115-127,2015.

  30. Leonetti, L., Fantuzzi, N., Trovalusci, P., and Tornabene, F., Scale Effects in Orthotopic Composite Assemblies as Micropolar Continua: A Comparison between Weak- and Strong-Form Finite Element Solutions, Materials, vol. 12, no. 5, 2019.

  31. Luciano, R. and Willis, J., Bounds on Non-Local Effective Relations for Random Composites Loaded by Configuration-Dependent Body Force, J. Mech. Phys. Solids, vol. 48, no. 9, pp. 1827-1849,2000.

  32. Masiani, R. and Trovalusci, P., Cosserat and Cauchy Materials as Continuum Models of Brick Masonry, Meccanica, vol. 31, no. 4, pp. 421-432,1996. DOI: 10.1007/BF00429930.

  33. Massart, T.J., Peerlings, R.H.J., and Geers, M.G.D., An Enhanced Multi-Scale Approach for Masonry Wall Computations with Localization of Damage, Int. J. Numer. Methods Eng., vol. 69, no. 5, pp. 1022-1059,2007.

  34. Nemat-Nasser, S., Hori, M., and Achenbach, J., Micromechanics: Overall Properties of Heterogeneous Materials, Amsterdam: Elsevier Science, 2013.

  35. Nguyen, V.P., Lloberas-Valls, O., Stroeven, M., and Sluys, L.J., Computational Homogenization for Multiscale Crack Modeling. Implementational and Computational Aspects, Int. J. Numer. Methods Eng., vol. 89, no. 2, pp. 192-226,2012.

  36. Onck, P.R., Cosserat Modeling of Cellular Solids, Comptes Rendus Mecanique, vol. 330, no. 11, pp. 717-722,2002.

  37. Ostoja-Starzewski, M., Boccara, S.D., and Jasiuk, I., Couple-Stress Moduli and Characteristics Length of a Two-Phase Composite, Mech. Res. Commun, vol. 26, no. 4, pp. 387-396,1999.

  38. Pau, A. and Trovalusci, P., Block Masonry as Equivalent Micropolar Continua: The Role of Relative Rotations, Acta Mech., vol. 223, no. 7, pp. 1455-1471,2012. DOI: 10.1007/s00707-012-0662-8.

  39. Peerlings, R.H.J. and Fleck, N.A., Computational Evaluation of Strain Gradient Elasticity Constants, Int. J. Multiscale Comput. Eng, vol. 2, no. 4,2004.

  40. Reccia, E., Leonetti, L., Trovalusci, P., and Cecchi, A., A Multiscale/Multidomain Model for the Failure Analysis of Masonry Walls: A Validation with a Combined FEM/DEM Approach, Int. J. Multiscale Comput. Eng., vol. 16, pp. 325-343,2018.

  41. Reddy, J., Introduction to the Finite Element Method, New York: McGraw-Hill, 2004.

  42. Reddy, J., Energy Principles and Variational Methods in Applied Mechanics, New York: Wiley, 2017.

  43. Rizzi, G., Corso, F.D., Veber, D., and Bigoni, D., Identification of Second-Gradient Elastic Materials from Planar Hexagonal Lattices. Part II: Mechanical Characteristics and Model Validation, Int. J. Solids Struct., vols. 176-177, pp. 19-35,2019.

  44. Scherphuis, J., Jaap's Puzzle Page, accessed on September 19,2019 from http://www.jaapsch.net/tilings, 2019.

  45. Sluys, L., de Borst, R., and Mulhaus, H.B., Wave Propagation, Localization and Dispersion in a Gradient-Dependent Medium, Int. J Solids Struct., vol. 30, no. 9, pp. 1153-1171,1993.

  46. Smyshlyaev, V. and Cherednichenko, K., On Rigorous Derivation of Strain Gradient Effects in the Overall Behaviour of Periodic Heterogeneous Media, J. Mech. Phys. Solids, vol. 48, no. 6, pp. 1325-1357,2000.

  47. Sokolowski, M., Theory of Couple-Stresses in Bodies with Constrained Rotations, Vol. 26 of CISM Courses and Lectures, Vienna, Austria: Springer, 1972.

  48. Tekolu, C. and Onck, P.R., Size Effects in Two-Dimensional Voronoi Foams: A Comparison between Generalized Continua and Discrete Models, J. Mech. Phys. Solids, vol. 56, no. 12, pp. 3541-3564,2008.

  49. Trovalusci, P., Molecular Approaches for Multifield Continua: Origins and Current Developments, Vienna, Austria: Springer, pp. 211-278,2014. DOI: 10.1007/978-3-7091-1812-2.7.

  50. Trovalusci, P., Bellis, M.L.D., and Masiani, R., A Multiscale Description of Particle Composites: From Lattice Microstructures to Micropolar Continua, Compos. Part B: Eng, vol. 128, pp. 164-173,2017.

  51. Trovalusci, P. and Masiani, R., Material Symmetries of Micropolar Continua Equivalent to Lattices, Int. J. Solids Struct., vol. 36, no. 14, pp. 2091-2108,1999.

  52. Trovalusci, P. and Masiani, R., Non-Linear Micropolar and Classical Continua for Anisotropic Discontinuous Materials, Int. J. Solids Struct, vol. 40, no. 5, pp. 1281-1297,2003.

  53. Trovalusci, P. and Masiani, R., A Multifield Model for Blocky Materials based on Multiscale Description, Int. J. Solids Struct., vol. 42, no. 21, pp. 5778-5794,2005.

  54. Trovalusci, P. and Pau, A., Derivation of Microstructured Continua from Lattice Systems via Principle of Virtual Works: The Case of Masonry-Like Materials as Micropolar, Second Gradient and Classical Continua, Acta Mech, vol. 225, no. 1, pp. 157-177, 2014.

  55. Trovalusci, P. and Sansalone, V., A Numerical Investigation of Structure-Property Relations in Fiber Composite Materials, Int. J. Multisc. Comput. Eng., vol. 5, no. 2, pp. 141-152,2007.

  56. Trovalusci, P., Varano, V., and Rega, G., A Generalized Continuum Formulation for Composite Microcracked Materials and Wave Propagation in a Bar, J. Appl. Mech, vol. 77, no. 6, p. 061002,2010. DOI: 10.1115/1.4001639.

  57. Tuna, M., Kirca, M., and Trovalusci, P., Deformation of Atomic Models and Their Equivalent Continuum Counterparts Using Eringens Two-Phase Local/Nonlocal Model, Mech. Res. Commun., vol. 97, pp. 26-32,2019.

  58. Tuna, M. and Trovalusci, P., Scale Dependent Continuum Approaches for Discontinuous Assemblies: Explicit and Implicit Non-LocalModels, Mech. Res. Commun, vol. 103,p. 103461,2020. DOI: 10.1016/j.mechrescom.2019.103461.

  59. Yang, D., Sheng, Y., Ye, J., and Tan, Y., Collapse Behaviour of Three-Dimensional Brick-Block Systems Using Non-Linear Programming, Struct. Eng. Mech, vol. 10, no. 2, pp. 181-195,2000.

  60. Yang, D., Sheng, Y., Ye, J., and Tan, Y., Discrete Element Modeling of the Microbond Test of Fiber Reinforced Composite, Comput. Mater. Sci., vol. 49, no. 2, pp. 253-259,2010.

ЦИТИРОВАНО В
  1. Colatosti Marco, Fantuzzi Nicholas, Trovalusci Patrizia, Dynamic Characterization of Microstructured Materials Made of Hexagonal-Shape Particles with Elastic Interfaces, Nanomaterials, 11, 7, 2021. Crossref

  2. Colatosti Marco, Fantuzzi Nicholas, Trovalusci Patrizia, Time-History Analysis of Composite Materials with Rectangular Microstructure under Shear Actions, Materials, 14, 21, 2021. Crossref

  3. Tuna Meral, Leonetti Lorenzo, Trovalusci Patrizia, Kirca Mesut, ‘Explicit’ and ‘Implicit’ Non-local Continuum Descriptions: Plate with Circular Hole, in Size-Dependent Continuum Mechanics Approaches, 2021. Crossref

  4. Bacciocchi Michele, Tarantino Angelo Marcello, Analytical solutions for vibrations and buckling analysis of laminated composite nanoplates based on third-order theory and strain gradient approach, Composite Structures, 272, 2021. Crossref

  5. Bacciocchi Michele, Tarantino Angelo Marcello, Third-Order Theory for the Bending Analysis of Laminated Thin and Thick Plates Including the Strain Gradient Effect, Materials, 14, 7, 2021. Crossref

  6. Pingaro Marco, De Bellis Maria Laura, Trovalusci Patrizia, Masiani Renato, Statistical homogenization of polycrystal composite materials with thin interfaces using virtual element method, Composite Structures, 264, 2021. Crossref

  7. Colatosti Marco, Fantuzzi Nicholas, Trovalusci Patrizia, Masiani Renato, New insights on homogenization for hexagonal-shaped composites as Cosserat continua, Meccanica, 57, 4, 2022. Crossref

  8. Shi Farui, Fantuzzi Nicholas, Trovalusci Patrizia, Li Yong, Wei Zuoan, The effects of dilatancy in composite assemblies as micropolar continua, Composite Structures, 276, 2021. Crossref

  9. Dong Yifeng, Li Ying, A review on the mechanical property evaluation and optimization design of fabric rubber composite structure, Composites Part C: Open Access, 8, 2022. Crossref

  10. Maier Giulio , LETTER TO THE EDITOR: DEDICATION LETTER TO PATRIZIA TROVALUSCI ON THE OCCASION OF HER 60TH BIRTHDAY , International Journal for Multiscale Computational Engineering, 20, 5, 2022. Crossref

  11. Fantuzzi Nicholas, Shi Farui , Colatosti Marco , Luciano Raimondo, MULTISCALE HOMOGENIZATION AND ANALYSIS OF ANISOTROPIC ASSEMBLIES AS COSSERAT CONTINUA , International Journal for Multiscale Computational Engineering, 20, 5, 2022. Crossref

  12. Ibrahimbegovic Adnan, Rukavina Ivan , Suljevic Samir , MULTISCALE MODEL WITH EMBEDDED DISCONTINUITY DISCRETE APPROXIMATION CAPABLE OF REPRESENTING FULL SET OF 3D FAILURE MODES FOR HETEROGENEOUS MATERIALS WITH NO SCALE SEPARATION , International Journal for Multiscale Computational Engineering, 20, 5, 2022. Crossref

  13. Colatosti Marco, Shi Farui, Fantuzzi Nicholas, Trovalusci Patrizia, Mechanical characterization of composite materials with rectangular microstructure and voids, Archive of Applied Mechanics, 2022. Crossref

  14. Shi Farui, Fantuzzi Nicholas, Trovalusci Patrizia, Li Yong, Wei Zuoan, Stress Field Evaluation in Orthotropic Microstructured Composites with Holes as Cosserat Continuum, Materials, 15, 18, 2022. Crossref

  15. Maier Giulio , LETTER TO THE EDITOR: DEDICATION LETTER TO PATRIZIA TROVALUSCI ON THE OCCASION OF HER 60TH BIRTHDAY , International Journal for Multiscale Computational Engineering, 20, 6, 2022. Crossref

  16. Konstantinidis Avraam A., Aifantis Elias C., GRADIENTS AND INTERNAL LENGTHS IN SMALL SCALE PROBLEMS OF MECHANICS , International Journal for Multiscale Computational Engineering, 20, 6, 2022. Crossref

  17. Colatosti Marco, Shi Farui, Fantuzzi Nicholas, Trovalusci Patrizia, Dynamic Characterization of Hexagonal Microstructured Materials with Voids from Discrete and Continuum Models, Materials, 15, 21, 2022. Crossref

Портал Begell Электронная Бибилиотека e-Книги Журналы Справочники и Сборники статей Коллекции Цены и условия подписки Begell House Контакты Language English 中文 Русский Português German French Spain