Доступ предоставлен для: Guest
Портал Begell Электронная Бибилиотека e-Книги Журналы Справочники и Сборники статей Коллекции
International Journal for Multiscale Computational Engineering
Импакт фактор: 1.016 5-летний Импакт фактор: 1.194 SJR: 0.554 SNIP: 0.68 CiteScore™: 1.18

ISSN Печать: 1543-1649
ISSN Онлайн: 1940-4352

Выпуски:
Том 17, 2019 Том 16, 2018 Том 15, 2017 Том 14, 2016 Том 13, 2015 Том 12, 2014 Том 11, 2013 Том 10, 2012 Том 9, 2011 Том 8, 2010 Том 7, 2009 Том 6, 2008 Том 5, 2007 Том 4, 2006 Том 3, 2005 Том 2, 2004 Том 1, 2003

International Journal for Multiscale Computational Engineering

DOI: 10.1615/IntJMultCompEng.v2.i4.80
29 pages

Nonlinear viscoelastic analysis of statistically homogeneous random composites

Michal Sejnoha
Department of Mechanics, Faculty of Civil Engineering, Czech Technical University in Prague, Thakurova 7,166 29 Prague 6, Czech Republic
R. Valenta
Faculty of Civil Engineering, Department of Structural Mechanics, Czech Technical University in Prague, Thakurova 7,166 29 Prague 6, Czech Republic
Jan Zeman
Department of Mechanics, Faculty of Civil Engineering, Czech Technical University in Prague, Thakurova 7,166 29 Prague 6, Czech Republic; Centre of Excellence IT4Innovations, VSB-TU Ostrava, 17 listopadu 15/2172 708 33 Ostrava-Poruba, Czech Republic

Краткое описание

Owing to the high computational cost in the analysis of large composite structures through a multiscale or hierarchical modeling, an efficient treatment of complex material systems at individual scales is of paramount importance. Limiting the attention to the level of constituents, the present paper offers a prosperous modeling strategy for the prediction of nonlinear viscoelastic response of fibrous graphite-epoxy composite systems with possibly random distribution of fibers within a transverse plane section of the composite aggregate. If such a material can be marked as statistically homogeneous and the mechanisms driving the material response fall within a category of the first-order homogenization scheme the variational principles of Hashin and Shtrikman emerge as an appealing option in the solution of uncoupled micro-macro computational homogenization. The material statistics up to two-point probability function that are used to describe the morphology of such a microstructure can be then directly incorporated into variational formulations to provide bounds on the effective material response of the assumed composite medium. In the present formulation the Hashin-Shtrikman variational principles are further extended to account for the presence of various transformation fields defined as local eigenstrain or eigenstress distributions in the phases. The evolution of such eigen-fields is examined here within a framework of the nonlinear viscoelastic behavior of a polymeric matrix conveniently described by the Leonov model. A fully implicit integration scheme is implemented to enhance the stability and efficiency of the underlying numerical analysis. A special choice of reference medium with a deformation-dependent shear modulus is proposed in order to improve the redistribution of averaged local fields due to local stress inhomogeneities associated with nonlinear viscoelastic response of the matrix phase. The present modeling strategy is further promoted by a good agreement of the results, including estimated effective thermoelastic properties, with the predictions of a direct microstructural computation.


Articles with similar content:

Size of a Representative Volume Element in a Second-Order Computational Homogenization Framework
International Journal for Multiscale Computational Engineering, Vol.2, 2004, issue 4
Marc Geers, W. A. M. Brekelmans, Varvara G. Kouznetsova
Macroscopic Constitutive Law for Mastic Asphalt Mixtures from Multiscale Modeling
International Journal for Multiscale Computational Engineering, Vol.8, 2010, issue 1
Michal Sejnoha, Jan Zeman, Richard Valenta
MICROMORPHIC TWO-SCALE MODELLING OF PERIODIC GRID STRUCTURES
International Journal for Multiscale Computational Engineering, Vol.11, 2013, issue 2
Hans-Georg Sehlhorst, Alexander Duster, Ralf Janicke, Stefan Diebels
A MULTISCALE/MULTIDOMAIN MODEL FOR THE FAILURE ANALYSIS OF MASONRY WALLS: A VALIDATION WITH A COMBINED FEM/DEM APPROACH
International Journal for Multiscale Computational Engineering, Vol.16, 2018, issue 4
Patrizia Trovalusci, L. Leonetti, Antonella Cecchi, Emanuele Reccia
Finite Strain Micromechanical Modeling of Multiphase Composites
International Journal for Multiscale Computational Engineering, Vol.6, 2008, issue 5
Jacob Aboudi