Доступ предоставлен для: Guest
International Journal for Multiscale Computational Engineering

Выходит 6 номеров в год

ISSN Печать: 1543-1649

ISSN Онлайн: 1940-4352

The Impact Factor measures the average number of citations received in a particular year by papers published in the journal during the two preceding years. 2017 Journal Citation Reports (Clarivate Analytics, 2018) IF: 1.4 To calculate the five year Impact Factor, citations are counted in 2017 to the previous five years and divided by the source items published in the previous five years. 2017 Journal Citation Reports (Clarivate Analytics, 2018) 5-Year IF: 1.3 The Immediacy Index is the average number of times an article is cited in the year it is published. The journal Immediacy Index indicates how quickly articles in a journal are cited. Immediacy Index: 2.2 The Eigenfactor score, developed by Jevin West and Carl Bergstrom at the University of Washington, is a rating of the total importance of a scientific journal. Journals are rated according to the number of incoming citations, with citations from highly ranked journals weighted to make a larger contribution to the eigenfactor than those from poorly ranked journals. Eigenfactor: 0.00034 The Journal Citation Indicator (JCI) is a single measurement of the field-normalized citation impact of journals in the Web of Science Core Collection across disciplines. The key words here are that the metric is normalized and cross-disciplinary. JCI: 0.46 SJR: 0.333 SNIP: 0.606 CiteScore™:: 3.1 H-Index: 31

Indexed in

Chemical Complexity in Mechanical Deformation of Metals

Том 5, Выпуск 3-4, 2007, pp. 181-202
DOI: 10.1615/IntJMultCompEng.v5.i3-4.30
Get accessGet access

Краткое описание

Prediction of the deformation behavior of metals in the presence of environmentally embrittling species like water or hydrogen, or under presence of organic reactive chemicals, remains a critical challenge in materials modeling. Here we propose a combination of the first principles-based reactive force field ReaxFF and the embedded atom method (EAM) in a generic multi-scale modeling framework, the Computational Materials Design Facility (CMDF), that enables the treatment of large reactive metallic systems within a classical molecular dynamics framework. Our hybrid method is based on coupling multiple Hamiltonians by weighting functions, which allows accurate modeling of chemically active sites with the reactive force field, while other parts of the system are described with the computationally less expensive EAM potential. We apply our hybrid modeling scheme in a study of fracture of a nickel single crystal under the presence of oxygen molecules. We observe that the oxide formed on the crack surface produces numerous defects surrounding the crack, including dislocations, grain boundaries, and point defects. We show that the mode of crack propagation changes from brittle crack opening at the crack tip to void formation ahead of the crack and void coalescence for lll orientation of the crack. Our results illustrate the significance of considering oxidative processes in studying deformation of metals, an aspect largely neglected in most modeling work carried out with pure EAM potentials. Our hybrid method constitutes an alternative to existing methods that are based on coupling quantum mechanical methods, such as density functional theory, to empirical potentials.

ЦИТИРОВАНО В
  1. Yedla Natraj, Meraj Md., Gupta Pradeep, Sarat Venumbakkam, Kabi Amar Jyoti, Pal Snehanshu, The effect of nano-void on deformation behaviour of Al-Cu intermetallic thin film compounds, Metallurgical Research & Technology, 112, 5, 2015. Crossref

  2. Lew Andrew J., Yu Chi-Hua, Hsu Yu-Chuan, Buehler Markus J., Deep learning model to predict fracture mechanisms of graphene, npj 2D Materials and Applications, 5, 1, 2021. Crossref

Портал Begell Электронная Бибилиотека e-Книги Журналы Справочники и Сборники статей Коллекции Цены и условия подписки Begell House Контакты Language English 中文 Русский Português German French Spain