Доступ предоставлен для: Guest
International Journal for Multiscale Computational Engineering

Выходит 6 номеров в год

ISSN Печать: 1543-1649

ISSN Онлайн: 1940-4352

The Impact Factor measures the average number of citations received in a particular year by papers published in the journal during the two preceding years. 2017 Journal Citation Reports (Clarivate Analytics, 2018) IF: 1.4 To calculate the five year Impact Factor, citations are counted in 2017 to the previous five years and divided by the source items published in the previous five years. 2017 Journal Citation Reports (Clarivate Analytics, 2018) 5-Year IF: 1.3 The Immediacy Index is the average number of times an article is cited in the year it is published. The journal Immediacy Index indicates how quickly articles in a journal are cited. Immediacy Index: 2.2 The Eigenfactor score, developed by Jevin West and Carl Bergstrom at the University of Washington, is a rating of the total importance of a scientific journal. Journals are rated according to the number of incoming citations, with citations from highly ranked journals weighted to make a larger contribution to the eigenfactor than those from poorly ranked journals. Eigenfactor: 0.00034 The Journal Citation Indicator (JCI) is a single measurement of the field-normalized citation impact of journals in the Web of Science Core Collection across disciplines. The key words here are that the metric is normalized and cross-disciplinary. JCI: 0.46 SJR: 0.333 SNIP: 0.606 CiteScore™:: 3.1 H-Index: 31

Indexed in

A Hybrid Lattice Boltzmann Finite Difference Scheme for the Diffusion Equation

Том 4, Выпуск 2, 2006, pp. 209-219
DOI: 10.1615/IntJMultCompEng.v4.i2.20
Get accessGet access

Краткое описание

We show how a lattice Boltzmann (LB) can be spatially coupled with a finite difference (FD) scheme, each method running on a separate region, to solve a given problem. The typical situation we consider is a computational domain that is partitioned into two regions. The same spatiotemporal physical process extends over the full domain, but a different numerical method is used over each region. At the interface of the subdomains, the LB and FD must be connected so as to ensure a perfect continuity of the physical quantities. We derive the theoretical concepts, which allow us to link both methods in the case of a diffusion process, and validate them with numerical simulations on a two-dimensional domain. We also consider the case of different size grids for which the coupling has to be complemented with an interpolation procedure.

Портал Begell Электронная Бибилиотека e-Книги Журналы Справочники и Сборники статей Коллекции Цены и условия подписки Begell House Контакты Language English 中文 Русский Português German French Spain