Доступ предоставлен для: Guest
Портал Begell Электронная Бибилиотека e-Книги Журналы Справочники и Сборники статей Коллекции
International Journal for Multiscale Computational Engineering
Импакт фактор: 1.016 5-летний Импакт фактор: 1.194 SJR: 0.554 SNIP: 0.68 CiteScore™: 1.18

ISSN Печать: 1543-1649
ISSN Онлайн: 1940-4352

Выпуски:
Том 17, 2019 Том 16, 2018 Том 15, 2017 Том 14, 2016 Том 13, 2015 Том 12, 2014 Том 11, 2013 Том 10, 2012 Том 9, 2011 Том 8, 2010 Том 7, 2009 Том 6, 2008 Том 5, 2007 Том 4, 2006 Том 3, 2005 Том 2, 2004 Том 1, 2003

International Journal for Multiscale Computational Engineering

DOI: 10.1615/IntJMultCompEng.2014007103
pages 33-43

BOUNDARY ELEMENT METHOD MODELLING OF NANOCOMPOSITES

Jacek Ptaszny
Institute of Computational Mechanics and Engineering, Silesian University of Technology, Konarskiego 18A, 44-100 Gliwice, Poland
Grzegorz Dziatkiewicz
Institute of Computational Mechanics and Engineering, Silesian University of Technology, Konarskiego 18A, 44-100 Gliwice, Poland
Piotr Fedelinski
Institute of Computational Mechanics and Engineering, Silesian University of Technology, Konarskiego 18A, 44-100 Gliwice, Poland

Краткое описание

The paper deals with the numerical homogenization of polymer/clay nanocomposites reinforced by stacks of parallel clay sheets. The stacks can be modelled as effective particles, as it was shown in the literature. For a relatively small volume fraction of the reinforcement, the effective particles can be isotropic, while for greater values, the particles should be anisotropic. Other authors most commonly use analytical methods or the finite element method (FEM). In this work, the boundary element method (BEM) is applied. Two-dimensional plain strain models are analyzed. Two cases are considered, namely, isotropic and anisotropic (orthotropic) particles. The matrix of the composite is modelled as isotropic. The problem is solved by using a BEM formulation for plates containing many identical inclusions. The kernels of boundary integrals for the isotropic subdomains are the Kelvin solutions for plane elasticity. In the case of the orthotropic particles, fundamental solutions obtained by the Stroh formalism are applied. The results are compared to the Mori-Tanaka model. Acceptable agreement between the models is observed.

ЛИТЕРАТУРА

  1. Beer, G., Smith, I., and Duenser, C., The Boundary Element Method with Programming for Engineers and Scientists.

  2. Brebbia, C. A. and Dominguez, J., Boundary Elements, An Introductory Course.

  3. Fedeliński, P., Ed., Advanced Computer Modelling in Micromechanics.

  4. Figiel, Ł. and Buckley, C. P., Elastic constants for an intercalated layered–silicate/polymer nanocomposite using the effective particle concept—A parametric study using numerical and analytical continuum approaches. DOI: 10.1016/j.commatsci.2008.09.005

  5. Hbaieb, K., Wang, Q. X., Chia, Y. H. J., and Cotterell, B., Modelling stiffness of polymer/clay nanocomposites. DOI: 10.1016/j.polymer.2006.11.062

  6. Kouznetsova, V., Brekelmans, W. A. M., and Baaijens, F. P. T., An approach to micro–macro modeling of heterogeneous materials. DOI: 10.1007/s004660000212

  7. Mura, T., Micromechanics of Defects in Solids.

  8. Nemat-Nasser, S. and Hori, M., Micromechanics: Overall Properties of Heterogeneous Materials.

  9. Pan, E., A BEM analysis of fracture mechanics in 2D anisotropic piezoelectric solids. DOI: 10.1016/S0955-7997(98)00062-9

  10. Ptaszny, J. and Fedeliński, P., Numerical homogenization of polymer/clay nanocomposites by the boundary element method.

  11. Sfantos, G. K. and Aliabadi, M. H., A boundary cohesive grain element formulation for modelling intergranular microfracture in polycrystalline brittle materials. DOI: 10.1002/nme.1831

  12. Sheng, N., Boyce, M. C., Parks, D. M., Rutledge, G. C., Abes, J. I., and Cohen, R. E., Multiscale micromechanical modeling of polymer/clay nanocomposites and the effective clay particle. DOI: 10.1016/j.polymer.2003.10.100

  13. Ting, T. C. T., Anisotropic Elasticity, Theory, and Applications.

  14. Wang, J. and Pyrz, R., Prediction of the overall moduli of layered silicate-reinforced nanocomposites, Part I. Basic theory and formulas. DOI: 10.1016/S0266-3538(03)00024-1

  15. Wang, J. and Pyrz, R., Prediction of the overall moduli of layered silicate-reinforced nanocomposites, Part II. Analyses. DOI: 10.1016/S0266-3538(03)00025-3

  16. Wang, Y. M. and Ting, T. C. T., The Stroh formalism for anisotropic materials that possess an almost extraordinary degenerate matrix N. DOI: 10.1016/S0020-7683(96)00024-8

  17. Yao, Z., Kong, F., and Zheng, X., Simulation of 2D elastic bodies with randomly distributed circular inclusions using the BEM.

  18. Zohdi, T. I. and Wriggers, P., An Introduction to Computational Micromechanics.


Articles with similar content:

Asymptotic Homogenization Models for Smart Composite Plates with Rapidly Varying Thickness: Part II—Applications
International Journal for Multiscale Computational Engineering, Vol.2, 2004, issue 1
A. V. Georgiades, A. L. Kalamkarov
SIMPLIFIED BUCKLING ANALYSIS OF STIFFENED LAMINATED SANDWICH PLATES
Composites: Mechanics, Computations, Applications: An International Journal, Vol.10, 2019, issue 1
Husam Al Qablan, Hazim M. Dwairi, Samer Rabab'ah, Omar Al Hattamleh
A COMPUTATIONAL APPROACH FOR EVALUATING THE EFFECTIVE ELASTIC MODULI OF NON-SPHERICAL PARTICLE REINFORCED COMPOSITES WITH INTERFACIAL DISPLACEMENT AND TRACTION JUMPS
International Journal for Multiscale Computational Engineering, Vol.13, 2015, issue 2
Shui Tao Gu, JianTao Liu, Qi-Chang He
EFFECTIVE THERMOELASTIC PROPERTIES OF HETEROGENEOUS THERMOPERISTATIC BAR OF RANDOM STRUCTURE
International Journal for Multiscale Computational Engineering, Vol.13, 2015, issue 1
Valeriy A. Buryachenko, Chen Wanji, Yang Shengqi
EFFECTIVE THERMOELASTIC PROPERTIES OF POLYSILOXANE MATRIX-BASED PLAIN WEAVE TEXTILE COMPOSITES
International Journal for Multiscale Computational Engineering, Vol.13, 2015, issue 3
Michal Sejnoha, Jan Vorel, Edith Grippon