Доступ предоставлен для: Guest
Портал Begell Электронная Бибилиотека e-Книги Журналы Справочники и Сборники статей Коллекции
International Journal for Multiscale Computational Engineering
Импакт фактор: 1.016 5-летний Импакт фактор: 1.194 SJR: 0.554 SNIP: 0.68 CiteScore™: 1.18

ISSN Печать: 1543-1649
ISSN Онлайн: 1940-4352

Выпуски:
Том 17, 2019 Том 16, 2018 Том 15, 2017 Том 14, 2016 Том 13, 2015 Том 12, 2014 Том 11, 2013 Том 10, 2012 Том 9, 2011 Том 8, 2010 Том 7, 2009 Том 6, 2008 Том 5, 2007 Том 4, 2006 Том 3, 2005 Том 2, 2004 Том 1, 2003

International Journal for Multiscale Computational Engineering

DOI: 10.1615/IntJMultCompEng.2013007162
pages 45-64

REDUCED-ORDER MULTISCALE-MULTIPHYSICS MODEL FOR HETEROGENEOUS MATERIALS

Zheng Yuan
Multiscale Design Systems, LLC 280 Park Avenue South New York, NY 10010, USA
Tao Jiang
Multiscale Design Systems LLC, 280 Park Ave, Apt 22M, New York, NY 10010, U.S.A.
Jacob Fish
Civil Engineering and Engineering Mechanics, Columbia University, New York, New York 10027, USA
Greg Morscher
Department of Mechanical Engineering, University of Akron, Akron, OH 44325, U.S.A.

Краткое описание

A unified coupled multiscale mechano-diffusion-reaction model of environmental degradation of polymer matrix composite (PMC) and ceramic matrix composite (CMC) is developed. The unified multiscalemultiphysics model couples multiple physical processes at multiple scales, including oxygen diffusion, oxidation, and deformation. The salient feature of the unified multiscalemultiphysics model is its computational efficiency accomplished through a systematic model reduced carried out prior to nonlinear analysis. The model has been validated for PMR-15 reinforced carbon fiber composite and melt infiltrated CMC-NASA N24A material system.

ЛИТЕРАТУРА

  1. Abdel-Tawab, K. and Weitsman, Y. J., A strain-based formulation for the coupled viscoelastic/damage behavior. DOI: 10.1115/1.1348013

  2. Babuska, I., Homogenization and its applications, mathematical and computational problems.

  3. Bensoussan, A., Lions, J. L., and Papanicolaou, G., Asymptotic Analysis for Periodic Structures.

  4. Cernocky, E. P. and Krempl, E., A nonlinear uniaxial integral constitutive equation incorporating rate effects, creep and relaxation. DOI: 10.1016/0020-7462(79)90035-0

  5. DiCarlo, J. A. and Yun, H.-M., Creep and stress rupture behavior of advanced SiC fibers.

  6. DiCarlo, J. A., Yun, H.-M., Morscher, G. N., and Bhatt, R. T., SiC/SiC composites for 1200°C and above. DOI: 10.1007/0-387-23986-3_4

  7. Fish, J., Shek, K., Pandheeradi, M., and Shephard, M. S., Computational plasticity for composite structures based on mathematical homogenization: Theory and practice. DOI: 10.1016/S0045-7825(97)00030-3

  8. Fish, J., Yu, Q., and Shek, K. L., Computational damage mechanics for composite materials based on mathematical homogenization. DOI: 10.1002/(SICI)1097-0207(19990820)45:11%3C1657::AID-NME648%3E3.0.CO;2-H

  9. Fish, J. and Chen, W., Modeling and simulation of piezocomposites. DOI: 10.1016/S0045-7825(03)00343-8

  10. Fish, J., Practical Multiscaling.

  11. Kuznetsov, S. and Fish, J., Mathematical homogenization theory for electroactive continuum. DOI: 10.1002/nme.4311

  12. McManus, H. L., Foch, B. J., and Cunningham, R. A., Mechanism-based modeling of long-term degradation. DOI: 10.1520/CTR10634J

  13. Michopoulos, J. G., Farhat, C., and Fish, J., Survey on modeling and simulation of multiphysics systems. DOI: 10.1115/1.2031269

  14. Morscher, G. N., Ojard, G., Miller, R., Gowayed, Y., Santhosh, U., Ahmad, J., and John, R., Tensile creep and fatigue of Sylramic-iBN melt-infiltrated SiC matrix composites: Retained properties, damage development, and failure mechanisms. DOI: 10.1016/j.compscitech.2008.08.028

  15. Morscher, G. N., John, R., Zawada, L., Brewer, D., Ojard, G., and Calomino, A., Creep in vacuum of woven Sylramic-iBN melt-infiltrated composites. DOI: 10.1016/j.compscitech.2010.10.003

  16. Odegard, G. and Kumosa, M., Elastic-plastic and failure properties of a unidirectional carbon/PMR-15 composite at room and elevated temperatures. DOI: 10.1016/S0266-3538(00)00163-9

  17. Oskay, C. and Fish, J., Eigendeformation-based reduced order homogenization for failure analysis of heterogeneous materials. DOI: 10.1016/j.cma.2006.08.015

  18. Oskay, C. and Haney, M., Computational modeling of titanium structures subjected to thermo-chemo-mechanical environment. DOI: 10.1016/j.ijsolstr.2010.08.014

  19. Ozdemir, I., Brekelmans, W. A. M., and Geers, M. G. D., FE2 computational homogenization for the thermo-mechanical analysis of heterogeneous solids. DOI: 10.1016/j.cma.2008.09.008

  20. Ruggles-Wrenn, M. B. and Broeckert, J. L., Effects of prior aging at 288°C in air and in argon environments on creep response of PMR-15 neat resin. DOI: 10.1002/app.28766

  21. Rupnowski, P., Gentz, M., Sutter, J. K., and Kumosa, M., An evaluation of the elastic properties and thermal expansion coefficients of medium and high modulus graphite fibers. DOI: 10.1016/j.compositesa.2004.07.003

  22. Sánchez-Palencia, E., Non-Homogeneous Media and Vibration Theory.

  23. Schoeppner, G. A., Tandon, G. P., and Ripberger, E. R., Anisotropic oxidation and weight loss in PMR-15 composites. DOI: 10.1016/j.compositesa.2006.07.006

  24. Schoeppner, G. A., Tandon, G. P., and Pochiraju, K. V., Predicting thermooxidative degradation and performance of high-temperature polymer matrix composites. DOI: 10.1007/978-0-387-68556-4_9

  25. Suquet, P., Elements of homogenization for inelastic solid mechanics. DOI: 10.1007/3-540-17616-0_15

  26. Terada, K. and Kurumatani, M., Two-scale diffusion–deformation coupling model for material deterioration involving micro-crack propagation. DOI: 10.1002/nme.2835

  27. Thouless, M. D., Sbaizer, O., Sigl, L. S., and Evans, A. G., Effect of interface mechanical properties on pullout in a SiC-fiber-reinforced lithium aluminum silicate glass-ceramic. DOI: 10.1111/j.1151-2916.1989.tb06171.x

  28. Yu, Q. and Fish, J., Multiscale asymptotic homogenization for multiphysics problems with multiple spatial and temporal scales: A coupled thermo-viscoelastic example problem. DOI: 10.1016/S0020-7683(02)00255-X

  29. Yuan, Z. and Fish, J., Hierarchical model reduction at multiple scales. DOI: 10.1002/nme.2554

  30. Yuan, Z. and Fish, J., Multiple scale eigendeformation-based reduced order homogenization. DOI: 10.1016/j.cma.2008.12.038


Articles with similar content:

CONVECTIVE HEAT TRANSFER AUGEMENTATION BY FLEXIBLE FINS IN LAMINAR CHANNEL PULSATING FLOW
ICHMT DIGITAL LIBRARY ONLINE, Vol.0, 2015, issue
Rakshitha U. Joshi, Atul K. Soti, Rajneesh Bhardwaj
FRACTAL DESCRIPTION OF THE REINFORCEMENT MECHANISM OF DISPERSE-FILLED POLYMER COMPOSITES
Nanoscience and Technology: An International Journal, Vol.2, 2011, issue 2
G. V. Kozlov, Yuri G. Yanovsky, Yulia N. Karnet
Studies on Fiber/Matrix Interphase Development in Thermosetting-Matrix Composites
International Heat Transfer Conference 12, Vol.31, 2002, issue
Randa Pitchumani, F. Yang
COUPLED COHESIVE ZONE REPRESENTATIONS FROM 3D QUASICONTINUUM SIMULATION ON BRITTLE GRAIN BOUNDARIES
International Journal for Multiscale Computational Engineering, Vol.9, 2011, issue 4
Carsten Konke, Torsten Luther
Constitutive Modeling Based on Atomistics
International Journal for Multiscale Computational Engineering, Vol.1, 2003, issue 1
Cyrille Schwob, Jacob Fish