Доступ предоставлен для: Guest
Портал Begell Электронная Бибилиотека e-Книги Журналы Справочники и Сборники статей Коллекции
International Journal for Multiscale Computational Engineering
Импакт фактор: 1.016 5-летний Импакт фактор: 1.194 SJR: 0.554 SNIP: 0.82 CiteScore™: 2

ISSN Печать: 1543-1649
ISSN Онлайн: 1940-4352

Выпуски:
Том 18, 2020 Том 17, 2019 Том 16, 2018 Том 15, 2017 Том 14, 2016 Том 13, 2015 Том 12, 2014 Том 11, 2013 Том 10, 2012 Том 9, 2011 Том 8, 2010 Том 7, 2009 Том 6, 2008 Том 5, 2007 Том 4, 2006 Том 3, 2005 Том 2, 2004 Том 1, 2003

International Journal for Multiscale Computational Engineering

DOI: 10.1615/IntJMultCompEng.2012002781
pages 581-597

GRADIENT-DEPENDENT CONSTITUTIVE LAWS FOR A MODEL OF MICROCRACKED BODIES

Malika Bongue Boma
Department of Mechanical and Manufacturing Engineering, University of Calgary
Les Sudak
Department of Mechanical and Manufacturing Engineering, University of Calgary
Salvatore Federico
Department of Mechanical and Manufacturing Engineering, University of Calgary

Краткое описание

The aim of this paper is to propose nonlocal constitutive laws for a model of microcracked bodies. To do so, we use a multiscale approach: we call macroscopic the description in which the body is considered as a continuum and we refer to the microscopic scale when a crack is studied at a closer view. We first propose an approximation of the stress and strain fields in the vicinity of a crack, considering the neighboring discontinuities. We then use equivalence principles between micro- and macroscopic scales in order to determine the expression of the macroscopic constitutive assignments of the body. The latter are written not only in terms of the local values of the deformation and the local values of the geometrical variables representative of the crack field, but also in terms of their gradients. Numerical implementations are performed; we compare constitutive laws obtained from local and nonlocal approaches.

ЛИТЕРАТУРА

  1. Bazant, Z. P., Why continuum damage is non-local: micromechanical arguments. DOI: 10.1061/(ASCE)0733-9399(1991)117:5(1070)

  2. Bazant, Z. P. and Jirasek, M., Nonlocal integral formulations of plasticity and damage: Survey of progress. DOI: 10.1061/(ASCE)0733-9399(2002)128:11(1119)

  3. Bongue Boma, M., Modélisation de la fissuration pour l'évaluation de la perte d'étanchéité des structures en béton armé sous chargements mécaniques.

  4. Bongue-Boma, M. and Brocato, M., Liquids with vapour bubbles. DOI: 10.1016/j.camwa.2007.04.006

  5. Bongue Boma, M. and Brocato, M., A continuum model of micro-cracks in concrete. DOI: 10.1007/s00161-009-0130-4

  6. Bui, H.-D., Mécanique de la Rupture Fragile.

  7. Capriz, G., Continua with Microstructure.

  8. Cosserat, E. and Cosserat, F., Théorie des corps déformables.

  9. de Borst, R., Pamin, J., Peerlings, R., and Sluys, B., On gradient enhanced damage and plasticity models for failure in quasi brittle and frictional materials. DOI: 10.1007/BF00356485

  10. Denarie, E., Etude expérimentale des couplages viscoélatsicité-croissances des fissures dans les bétons de ciment. DOI: 10.5075/epfl-thesis-2195

  11. Edelen, D. G. B., Green, A., and Laws, N., Nonlocal continuum mechanics. DOI: 10.1007/BF00251544

  12. Epstein, M. and de Leon, M., Geometrical theory of uniform cosserat media. DOI: 10.1016/S0393-0440(97)00042-9

  13. Grassl, P. and Jirasek, M., Damage-plastic model for concrete failure. DOI: 10.1016/j.ijsolstr.2006.06.032

  14. Kachanov, L. M., Time of the rupture process under creep conditions.

  15. Kratzig, W. B. and Polling, R., An elasto-plastic damage model for reinforced concrete with minimum number of material parameters. DOI: 10.1016/j.compstruc.2004.03.002

  16. Maugin, G. A., Internal variables and dissipative structures. DOI: 10.1515/jnet.1990.15.2.173

  17. Mazars, J., Application de la Mécanique de lendommagement au comportement non linéaire et à la rupture du béton de structure.

  18. Mazars, J., A description of micro- and macroscale damage of concrete structures. DOI: 10.1016/0013-7944(86)90036-6

  19. Nguyen, G. D., A thermodynamic approach to non-local damage modelling of concrete. DOI: 10.1016/j.ijsolstr.2007.11.001

  20. Santaoja, K., Gradient theory from the thermomechanics point of view. DOI: 10.1016/S0013-7944(03)00038-9

  21. Simonin, F., Comportement thermomécanique de bétons réfractaires alumineux contenant du spinelle de magnésium.

  22. Ward, M. A. and Cook, D. J., The mechanism of tensile creep in concrete. DOI: 10.1680/macr.1969.21.68.151


Articles with similar content:

On the Multiscale Computation of Defect Driving Forces
International Journal for Multiscale Computational Engineering, Vol.7, 2009, issue 5
Paul Steinmann, Sarah Ricker, Julia Mergheim
A MODEL OF CONTACT OF ELASTIC BODIES WITH ACCOUNT FOR THEIR ADHESION
Nanoscience and Technology: An International Journal, Vol.6, 2015, issue 2
V. S. Shorkin, L. Yu. Frolenkova, S. N. Romashin, N. A. Dolgov
Size of a Representative Volume Element in a Second-Order Computational Homogenization Framework
International Journal for Multiscale Computational Engineering, Vol.2, 2004, issue 4
Marc Geers, W. A. M. Brekelmans, Varvara G. Kouznetsova
VOLUME-AVERAGING ISSUES ILLUSTRATED FOR POROUS-MEDIA THERMO-FLUID TRANSPORT
Special Topics & Reviews in Porous Media: An International Journal, Vol.5, 2014, issue 1
Faruk Civan
BUCKLING ANALYSIS OF RECTANGULAR FLEXURAL MICROPLATES USING HIGHER CONTINUITY P-VERSION FINITE-ELEMENT METHOD
International Journal for Multiscale Computational Engineering, Vol.10, 2012, issue 3
H. Farahmand , S. Arabnejad, A. R. Ahmadi