Доступ предоставлен для: Guest
Портал Begell Электронная Бибилиотека e-Книги Журналы Справочники и Сборники статей Коллекции
International Journal for Multiscale Computational Engineering
Импакт фактор: 1.016 5-летний Импакт фактор: 1.194 SJR: 0.554 SNIP: 0.82 CiteScore™: 2

ISSN Печать: 1543-1649
ISSN Онлайн: 1940-4352

Выпуски:
Том 18, 2020 Том 17, 2019 Том 16, 2018 Том 15, 2017 Том 14, 2016 Том 13, 2015 Том 12, 2014 Том 11, 2013 Том 10, 2012 Том 9, 2011 Том 8, 2010 Том 7, 2009 Том 6, 2008 Том 5, 2007 Том 4, 2006 Том 3, 2005 Том 2, 2004 Том 1, 2003

International Journal for Multiscale Computational Engineering

DOI: 10.1615/IntJMultCompEng.v4.i3.40
pages 337-349

Multiscale Finite Element Modelling of Pattern Formation in Magnetostrictive Composite Thin Film

D. Roy Mahapatra
Mathematical Modelling and Computational Sciences, Wilfrid Laurier University, Waterloo, ON N2L3C5, Canada; and Department of Aerospace Engineering, Indian Institute of Science, Bangalore 560012, India
D. P. Ghosh
Department of Aerospace Engineering, Indian Institute of Science, Bangalore 560012, India
S. Gopalakrishnan
Department of Aerospace Engineering, Indian Institute of Science, Bangalore 560012, India

Краткое описание

A multiscale finite element model with subgrid-scale spatial homogenization and stability estimate for time discretization in the context of magnetostrictive composite thin-film micromagnetics are reported in this paper. Developments of the phenomenological microscopic constitutive model and the subsequent multiscale approach are aimed at analyzing the formation of magnetic domains in Terfenol-D/epoxy thin film under transverse magnetic (TM) mode of excitation. The phenomenological constitutive model is based on the density of domain switching (DDS) of an ellipsoidal inclusion in a unit cell. The subgrid-scale spatial homogenization works as a method of upwinding the small-scale micromagnetism and magnetostriction to the larger length scale. Numerical results indicate complex features of this thin-film dynamics, such as the formation of connected domains.


Articles with similar content:

Multiscale Modeling of Composite Materials by a Multifield Finite Element Approach
International Journal for Multiscale Computational Engineering, Vol.3, 2005, issue 4
Patrizia Trovalusci, V. Sansalone, F. Cleri
Multiscale Analysis of Microstructural Evolution and Degradation in Solder Alloys
International Journal for Multiscale Computational Engineering, Vol.5, 2007, issue 2
M. Erinc, R. L. J. M. Ubachs, P. J. G. Schreurs, W. P. Vellinga, Marc Geers, M. A. Matin
MICROMORPHIC TWO-SCALE MODELLING OF PERIODIC GRID STRUCTURES
International Journal for Multiscale Computational Engineering, Vol.11, 2013, issue 2
Hans-Georg Sehlhorst, Alexander Duster, Ralf Janicke, Stefan Diebels
Computational Modeling of Ligament Mechanics
Critical Reviews™ in Biomedical Engineering, Vol.29, 2001, issue 3
John C. Gardiner, Jeffrey A. Weiss
MULTISCALE ANALYSIS OF ANISOTROPIC MATERIALS WITH HEXAGONAL MICROSTRUCTURE AS MICROPOLAR CONTINUA
International Journal for Multiscale Computational Engineering, Vol.18, 2020, issue 2
Nicholas Fantuzzi, Patrizia Trovalusci, R. Luciano