Доступ предоставлен для: Guest
Портал Begell Электронная Бибилиотека e-Книги Журналы Справочники и Сборники статей Коллекции
International Journal for Multiscale Computational Engineering
Импакт фактор: 1.016 5-летний Импакт фактор: 1.194 SJR: 0.554 SNIP: 0.68 CiteScore™: 1.18

ISSN Печать: 1543-1649
ISSN Онлайн: 1940-4352

Выпуски:
Том 17, 2019 Том 16, 2018 Том 15, 2017 Том 14, 2016 Том 13, 2015 Том 12, 2014 Том 11, 2013 Том 10, 2012 Том 9, 2011 Том 8, 2010 Том 7, 2009 Том 6, 2008 Том 5, 2007 Том 4, 2006 Том 3, 2005 Том 2, 2004 Том 1, 2003

International Journal for Multiscale Computational Engineering

DOI: 10.1615/IntJMultCompEng.v9.i4.40
pages 395-408

PERTURBATION-BASED STOCHASTIC MICROSCOPIC STRESS ANALYSIS OF A PARTICLE-REINFORCED COMPOSITE MATERIAL VIA STOCHASTIC HOMOGENIZATION ANALYSIS CONSIDERING UNCERTAINTY IN MATERIAL PROPERTIES

Sei-ichiro Sakata
Department of Electronic and Control Systems Engineering, Interdisciplinary Faculty of Science and Engineering, Shimane University, Japan
F. Ashida
Department of Electronic and Control Systems Engineering, Interdisciplinary Faculty of Science and Engineering, Shimane University, Japan
K. Enya
Graduate School of Shimane University, Japan

Краткое описание

This paper discusses stochastic multiscale stress analysis of a particle-reinforced composite material via the stochastic homogenization analysis. A microscopic random variation causes a random variation of a homogenized property and microscopic stress. For this stochastic stress analysis, a first-order perturbation-based approach is employed. The perturbation-based approach consists of stochastic homogenization, stochastic macroscopic, and microscopic stress analysis procedures. As an example, stochastic microscopic stress analysis for a microscopic random variation of a glass particle-reinforced composite material using the perturbation-based technique is performed. The obtained results are compared with the results of the Monte Carlo simulation; validity and application limit of the first-order perturbation-based approach is investigated.

ЛИТЕРАТУРА

  1. Guedes, M. and Kikuchi, N., Preprocessing and postprocessing for materials based on the homogenization method with adaptive finite element methods. DOI: 10.1016/0045-7825(90)90148-F

  2. Kaminski, M., Stochastic finite element method homogenization of heat conduction problem in fiber composites.

  3. Kaminski, M., Generalized perturbation-based stochastic finite element method in elastostatics. DOI: 10.1016/j.compstruc.2006.08.077

  4. Kaminski, M., Sensitivity and randomness in homogenization of periodic fiber-reinforced composites via the response function method. DOI: 10.1016/j.ijsolstr.2008.10.003

  5. Kaminski, M. and Kleiber, M., Perturbation based stochastic finite element method for homogenization of two-phase elastic composites. DOI: 10.1016/S0045-7949(00)00116-4

  6. Lombardo, M., Zeman, J., Sejnoha, M., and Falsone, G., Stochastic modeling of chaotic masonry via mesostructural characterization. DOI: 10.1615/IntJMultCompEng.v7.i2.70

  7. Ostoja-Starzewski, M., Microstructural randomness versus representative volume element in thermomechanics. DOI: 10.1115/1.1410366

  8. Press, W. H., Teukolski, S. A., Vetterling, W. T., and Flannery, B. P., Numerical Recipes in C (Japanese edition).

  9. Sakata, S., Ashida, F., Kojima, T., and Zako, M., Influence of uncertainty in microscopic material property on homogenized elastic property of unidirectional fiber reinforced composites.

  10. Sakata, S., Ashida, F., Kojima, T., and Zako, M., Three-dimensional stochastic analysis using a perturbation-based homogenization method for homogenized elastic property of inhomogeneous material considering microscopic uncertainty.

  11. Sakata, S., Ashida, F., and Zako, M., Stochastic response analysis of FRP using the second-order perturbation-based homogenization method. DOI: 10.1299/jmmp.2.70

  12. Sakata, S., Ashida, F., and Zako, M., Kriging-based approximate stochastic homogenization analysis for composite material. DOI: 10.1016/j.cma.2007.12.011

  13. Sakata, S., Ashida, F., and Kojima, T., Stochastic homogenization analysis on elastic properties of fiber reinforced composites using the equivalent inclusion method and perturbation method. DOI: 10.1016/j.ijsolstr.2008.08.017

  14. Sakata, S. and Ashida, F., Ns-Kriging based microstructural optimization applied to minimizing stochastic variation of homogenized elasticity of fiber reinforced composites. DOI: 10.1007/s00158-008-0296-6

  15. Sakata, S. and Ashida F., Stochastic analysis of microscopic stress in fiber reinforced composites considering uncertainty in a microscopic elastic property.

  16. Sakata, S., Ashida, F., and Kojima, T., Stochastic homogenization analysis for thermal expansion coefficients of fiber reinforced composites using the equivalent inclusion method with perturbation-based approach. DOI: 10.1016/j.compstruc.2009.12.007

  17. Sakata, S. and Ashida, F., A hierarchical stochastic homogenization method for particle-reinforced composite materials considering non-uniform distribution of microscopic random quantities. DOI: 10.1007/s00466-011-0604-7

  18. Stefanou, G., The stochastic finite element method: Past, present and future. DOI: 10.1016/j.cma.2008.11.007

  19. Xu, X. F. and Graham-Brady, L., Computational stochastic homogenization of random media elliptic problems using Fourier Galerkin method. DOI: 10.1016/j.finel.2005.11.003


Articles with similar content:

INVERSE STOCHASTIC HOMOGENIZATION ANALYSIS FOR A PARTICLE-REINFORCED COMPOSITE MATERIAL WITH THE MONTE CARLO SIMULATION
International Journal for Multiscale Computational Engineering, Vol.9, 2011, issue 4
F. Ashida, Y. Shimizu, Sei-ichiro Sakata
NUMERICAL APPROXIMATION OF ELLIPTIC PROBLEMS WITH LOG-NORMAL RANDOM COEFFICIENTS
International Journal for Uncertainty Quantification, Vol.9, 2019, issue 2
Xiaoliang Wan, Haijun Yu
Three-Dimensional Finite Element Modeling for Concrete Materials Using Digital Image and Embedded Discontinuous Element
International Journal for Multiscale Computational Engineering, Vol.4, 2006, issue 4
Takahiro Yamada, Gakuji Nagai
Application of the Automatic Image Processing in Modeling of the Deformation Mechanisms Based on the Digital Representation of Microstructure
International Journal for Multiscale Computational Engineering, Vol.8, 2010, issue 3
L. Madej, Lukasz Rauch
SOLUTION OF NONLINEAR INITIAL BOUNDARY-VALUE PROBLEMS OF THE MECHANICS OF MULTIPLY CONNECTED COMPOSITE MATERIAL SHELLS ON THE BASIS OF CONSERVATIVE DIFFERENCE SCHEMES
Composites: Mechanics, Computations, Applications: An International Journal, Vol.6, 2015, issue 4
O. V. Egorova, V. G. Dmitriev, Lev N. Rabinskiy