Доступ предоставлен для: Guest
Портал Begell Электронная Бибилиотека e-Книги Журналы Справочники и Сборники статей Коллекции
International Journal for Multiscale Computational Engineering
Импакт фактор: 1.016 5-летний Импакт фактор: 1.194 SJR: 0.554 SNIP: 0.68 CiteScore™: 1.18

ISSN Печать: 1543-1649
ISSN Онлайн: 1940-4352

Выпуски:
Том 17, 2019 Том 16, 2018 Том 15, 2017 Том 14, 2016 Том 13, 2015 Том 12, 2014 Том 11, 2013 Том 10, 2012 Том 9, 2011 Том 8, 2010 Том 7, 2009 Том 6, 2008 Том 5, 2007 Том 4, 2006 Том 3, 2005 Том 2, 2004 Том 1, 2003

International Journal for Multiscale Computational Engineering

DOI: 10.1615/IntJMultCompEng.v4.i5-6.110
pages 771-790

On the Implementation of Plane Stress in Computational Multiscale Modeling

Robert Lillbacka
FS Dynamics, Molndalsvagen 24, SE-412 63 Goteborg; Chalmers University of Technology, Department of Applied Mechanics, SE-412 96 Göteborg; and Swedish National Testing and Research Institute (SP), Brinellgatan 4, Box 857, SE-50115 Borås, Sweden
Fredrik Larsson
Department of Applied Mechanics, Chalmers University of Technology, S-412 96 Gothenburg
Kenneth Runesson
Department of Structural Mechanics Chalmers, University of Technology S-41296 Goteborg, Sweden

Краткое описание

Different aspects of the plane stress condition in concurrent two-scale computational (first-order) homogenization are discussed. The basic ingredient in computational homogenization is the calculation of the macroscale stress, for given macroscale deformation, via computations on a representative volume element (RVE). Two modeling assumptions are compared: The subscale (Hill-type) and macroscale-type (Taylor-type) plane stress conditions. The corresponding iterative strategies and the macroscale algorithmic tangent operators are derived using the primal (conventional) approach. The performance of the various iterative strategies are compared for a single RVE problem as well as in a fully concurrent analysis of a complex substructure (duplex stainless steel) under realistic subscale modeling based on crystal plasticity with hardening.


Articles with similar content:

A VARIANT OF THE S-VERSION OF THE FINITE ELEMENT METHOD FOR CONCURRENT MULTISCALE COUPLING
International Journal for Multiscale Computational Engineering, Vol.16, 2018, issue 2
Hachmi Ben Dhia, Wei Sun, Jacob Fish
ERROR CONTROLLED USE OF THE TAYLOR ASSUMPTION IN ADAPTIVE HIERARCHICAL MODELING OF DSS
International Journal for Multiscale Computational Engineering, Vol.13, 2015, issue 2
Robert Lillbacka, Kenneth Runesson, Fredrik Larsson
OVERALL ELASTIC PROPERTIES OF POLYSILICON FILMS: A STATISTICAL INVESTIGATION OF THE EFFECTS OF POLYCRYSTAL MORPHOLOGY
International Journal for Multiscale Computational Engineering, Vol.9, 2011, issue 3
Roberto Martini, Alberto Corigliano, Stefano Mariani, Marco Beghi, Aldo Ghisi
ON TENTH-ORDER CENTRAL SPATIAL SCHEMES
TSFP DIGITAL LIBRARY ONLINE, Vol.5, 2007, issue
Bjorn Sjogreen, H.C. Yee
ESSENTIAL FEATURES OF FINE SCALE BOUNDARY CONDITIONS FOR SECOND GRADIENT MULTISCALE HOMOGENIZATION OF STATISTICAL VOLUME ELEMENTS
International Journal for Multiscale Computational Engineering, Vol.10, 2012, issue 5
David L. McDowell, Darby Luscher, Curt Bronkhorst